
The DocStrip program ∗

Frank Mittelbach Denys Duchier Johannes Braams
Marcin Woliński Mark Wooding

Printed October 22, 2025

This file is maintained by the LATEX Project team.
Bug reports can be opened (category latex) at
https://latex-project.org/bugs.html.

Abstract

This document describes the implementation of the DocStrip program.
The original version of this program was developed by Frank Mittelbach to
accompany his doc.sty which enables literate programming in LATEX. Denys
Duchier rewrote it to run either with TEX or with LATEX, and to allow full
boolean expressions in conditional guards instead of just comma-separated
lists. Johannes Braams re-united the two implementations, documented and
debugged the code.

In September 1995 Marcin Woliński changed many parts of the program
to make use of TEX’s ability to write to multiple files at the same time to
avoid re-reading sources. The performance improvement of version 2.3 came
at a price of compatibility with some more obscure operating systems which
limit the number of files a process can keep open. This was corrected in
September 1996 by Mark Wooding and his changes were “creatively merged”
by Marcin Woliński who made at the same time changes in batch files pro-
cessing, handling of preambles and introduced “verbatim mode”. After all
that, David Carlisle merged the new version into the LATEX sources, and
made a few other changes, principally making DocStrip work under initex,
and removing the need for batch files to say \def\batchfile{...}.

1 Introduction

1.1 Why the DocStrip program?

When Frank Mittelbach created the doc package, he invented a way to combine
TEX code and its documentation. From then on it was more or less possible to do
literate programming in TEX.

This way of writing TEX programs obviously has great advantages, especially
when the program becomes larger than a couple of macros. There is one drawback
however, and that is that such programs may take longer than expected to run
because TEX is an interpreter and has to decide for each line of the program file

∗This file has version number v2.6c, last revised 2024-12-23, documentation dated 2025-09-23.

1

https://latex-project.org/bugs.html

what it has to do with it. Therefore, TEX programs may be sped up by removing
all comments from them.

By removing the comments from a TEX program a new problem is introduced.
We now have two versions of the program and both of them have to be maintained.
Therefore it would be nice to have a possibility to remove the comments automati-
cally, instead of doing it by hand. So we need a program to remove comments from
TEX programs. This could be programmed in any high level language, but maybe
not everybody has the right compiler to compile the program. Everybody who
wants to remove comments from TEX programs has TEX. Therefore the DocStrip
program is implemented entirely in TEX.

1.2 Functions of the DocStrip program

Having created the DocStrip program to remove comment lines from TEX pro-
grams1 it became feasible to do more than just strip comments.
Wouldn’t it be nice to have a way to include parts of the code only when some
condition is set true? Wouldn’t it be as nice to have the possibility to split the
source of a TEX program into several smaller files and combine them later into
one ‘executable’?
Both these wishes have been implemented in the DocStrip program.

2 How to use the DocStrip program

A number of ways exist to use the DocStrip program:

1. The usual way to use DocStrip is to write a batch file in such a way that it can
be directly processed by TEX. The batch file should contain the commands
described below for controlling the DocStrip program. This allows you to set
up a distribution where you can instruct the user to simply run

TEX ⟨batch file⟩

to generate the executable versions of your files from the distribution sources.
Most of the LATEX distribution is packaged this way. To produce such a
batch file include a statement in your ‘batch file’ that instructs TEX to read
docstrip.tex. The beginning of such a file would look like:

\input docstrip

...

By convention the batch file should have extension .ins. But these days
DocStrip in fact work with any extension.

2. Alternatively you can instruct TEX to read the file docstrip.tex and to see
what happens. TEX will ask you a few questions about the file you would
like to be processed. When you have answered these questions it does its
job and strips the comments from your TEX code.

1Note that only comment lines, that is lines that start with a single % character, are removed;
all other comments stay in the code.

2

3 Configuring DocStrip

3.1 Selecting output directories

Inspired by a desire to simplify reinstallations of LATEX2ε and to support operating
systems which have an upper limit on the number of files allowed in a directory,
DocStrip now allows installation scripts to specify output directories for files it
creates. We suggest using TDS (TEX directory structure) names of directories
relative to texmf here. However these names should be thought of as a labels
rather than actual names of directories. They get translated to actual system-
dependent pathnames according to commands contained in a configuration file
named docstrip.cfg.

The configuration file is read by DocStrip just before it starts to process any
batch file commands.

If this file is not present DocStrip uses some default settings which ensure that
files are only written to the current directory. However by use of this configuration
file, a site maintainer can ‘enable’ features of DocStrip that allow files to be written
to alternative directories.

Using this macro package author can tell where a file should be installed.\usedir

All \files generated in the scope of that declaration are written to a directory
specified by its one argument. For example in LATEX2ε installation following
declarations are used:

\usedir{tex/latex/base}

\usedir{makeindex}

And standard packages use

\usedir{tex/latex/tools}

\usedir{tex/latex/babel}

etc.
Used to display directory names in messages. If some label is not defined\showdirectory

it expands to UNDEFINED (label is ...) otherwise to a directory name. It is
probably a good idea for every installation script to display at startup list of all
directories that would be used and asking user to confirm that.

The above macros are used by package/installation script author. The follow-
ing macros are used in a configuration file, docstrip.cfg, by a system adminis-
trator to describe her/his local directory structure.

This macro is administrator’s way of saying “yes, I want to use that directories\BaseDirectory

support of yours”. DocStrip will write only to current directory unless your config
has a call to this macro. (This means DocStrip won’t write to random directories
unless you tell it to, which is nice.) Using this macro you can specify a base
directory for TEX-related stuff. E.g., for many Unix systems that would be

\BaseDirectory{/usr/local/lib/texmf}

and for standard emTEX installation

\BaseDirectory{c:/emtex}

Having specified the base directory you should tell DocStrip how to interpret\DeclareDir

labels used in \usedir commands. This is done with \DeclareDir with two
arguments. The first is the label and the second is actual name of directory

3

relative to base directory. For example to teach DocStrip using standard emTEX
directories one would say:

\BaseDirectory{c:/emtex}

\DeclareDir{tex/latex/base}{texinput/latex2e}

\DeclareDir{tex/latex/tools}{texinput/tools}

\DeclareDir{makeindex}{idxstyle}

This will cause base latex files and font descriptions to be written to direc-
tory c:\emtex\texinput\latex2e, files of the tools package to be written to
c:\emtex\texinput\tools and makeindex files to c:\emtex\idxstyle.

Sometimes it is desirable to put some files outside of the base directory. For that
reason \DeclareDir has a star form specifying absolute pathname. For example
one could say

\DeclareDir*{makeindex}{d:/tools/texindex/styles}

Users of systems conforming to TDS may well ask here “do I really need to\UseTDS

put a dozen of lines like

\DeclareDir{tex/latex/base}{tex/latex/base}

in my config file”. The answer is \UseTDS. This macro causes DocStrip to use
labels themselves for any directory you haven’t overridden with \DeclareDir.
The default behaviour is to raise an error on undefined labels because some users
may want to know exactly where files go and not to allow DocStrip to write to
random places. However I (MW) think this is pretty cool and my config says just
(I’m running teTEX under Linux)

\BaseDirectory{/usr/local/teTeX/texmf}

\UseTDS

The important thing to note here is that it is impossible to create a new
directory from inside TEX. So however you configure DocStrip, you need to create
all needed directories before running the installation. Authors may want to begin
every installation script by displaying a list of directories that will be used and
asking user if he’s sure all of them exist.

Since file name syntax is OS specific DocStrip tries to guess it from the cur-
rent directory syntax. It should succeed for Unix, MSDOS, Macintosh and VMS.
However DocStrip will only initially know the current directory syntax if it is used
with LATEX. If used with plainTEX or initex it will not have this information2.
If you often use DocStrip with formats other than LATEX you should start the
file docstrip.cfg with a definition of \WriteToDir. E.g., \def\WriteToDir{./}
on MSDOS/Unix, \def\WriteToDir{:} on Macintosh, \def\WriteToDir{[]} on
VMS.

If your system requires something completely different you can define in
docstrip.cfg macros \dirsep and \makepathname. Check for their definition
in the implementation part. If you want some substantially different scheme of
translating \usedir labels into directory names try redefining macro \usedir.

3.2 Setting maximum numbers of streams

In support of some of the more obscure operating systems, there’s a limit on the\maxfiles

2Except when processing the main unpack.ins batch file for the LATEX distribution, which
takes special measures so that initex can learn the directory syntax.

4

number of files a program can have open. This can be expressed to DocStrip
through the \maxfiles macro. If the number of streams DocStrip is allowed to
open is n, your configuration file can say \maxfiles{n}, and DocStrip won’t try
to open more files than this. Note that this limit won’t include files which are
already open. There’ll usually be two of these: the installation script which you
started, and the file docstrip.tex which it included; you must bear these in mind
yourself. DocStrip assumes that it can open at least four files before it hits some
kind of maximum: if this isn’t the case, you have real problems.

Maybe instead of having a limit on the number of files TEX can have open,\maxoutfiles

there’s a limit on the number of files it can write to (e.g., TEX itself imposes
a limit of 16 files being written at a time). This can be expressed by saying
\maxoutfiles{m} in a configuration file. You must be able to have at least one
output file open at a time; otherwise DocStrip can’t do anything at all.

Both these options would typically be put in the docstrip.cfg file.

4 The user interface

4.1 The main program

The ‘main program’ starts with trying to process a batch file, this is accomplished\processbatchFile

by calling the macro \processbatchFile. It counts the number of batch files it
processes, so that when the number of files processed is still zero after the call to
\processbatchFile appropriate action can be taken.

When no batch files have been processed the macro \interactive is called.\interactive

It prompts the user for information. First the extensions of the input and output
files is determined. Then a question about optional code is asked and finally the
user can give a list of files that have to be processed.

When the stats option is included in the DocStrip-program it keeps a record\ReportTotals

of the number of files and lines that are processed. Also the number of comments
removed and passed as well as the number of code lines that were passed to
the output are accounted. The macro \ReportTotals shows a summary of this
information.

4.2 Batchfile commands

The commands described in this section are available to build a batch file for TEX.
All DocStrip batch files should start with the line: \input docstrip\input

Do not use the LATEX syntax \input{docstrip} as batch files may be used
with plain TEX or iniTEX. You may find that old batch files always have a line
\def\batchfile{⟨filename⟩} just before the input. Such usage is still supported
but is now discouraged, as it causes TEX to re-input the same file, using up one
of its limited number of input streams.

All batch files should end with this command. Any lines after this in the file\endbatchfile

are ignored. In old files that start \def\batchfile{. . . this command is optional,
but is a good idea anyway. If this command is omitted from a batchfile then
normally TEX will go to its interactive * prompt, so you may stop DocStrip by
typing \endbatchfile to this prompt.

The main reason for constructing a DocStrip command file is to describe what\generate

\file

\from

files should be generated, from what sources and what optional (‘guarded’) pieces

5

of code should be included. The macro \generate is used to give TEX this infor-
mation. Its syntax is:

\generate{[\file{⟨output⟩}{[\from{⟨input⟩}{⟨optionlist⟩}]*}]*}

The ⟨output⟩ and ⟨input⟩ are normal file specifications as are appropriate for your
computer system. The ⟨optionlist⟩ is a comma separated list of ‘options’ that
specify which optional code fragments in ⟨input⟩ should be included in ⟨output⟩.
Argument to \generate may contain some local declarations (e.g., the \use...

commands described below) that will apply to all \files after them. Argument
to \generate is executed inside a group, so all local declarations are undone when
\generate concludes.

It is possible to specify multiple input files, each with its own ⟨optionlist⟩.
This is indicated by the notation [. . .]*. Moreover there can be many \file

specifications in one \generate clause. This means that all these ⟨output⟩ files
should be generated while reading each of ⟨input⟩ files once. Input files are read
in order of first appearance in this clause. E.g.

\generate{\file{p1.sty}{\from{s1.dtx}{foo,bar}}

\file{p2.sty}{\from{s2.dtx}{baz}

\from{s3.dtx}{baz}}

\file{p3.sty}{\from{s1.dtx}{zip}

\from{s2.dtx}{zip}}

}

will cause DocStrip to read files s1.dtx, s2.dtx, s3.dtx (in that order) and pro-
duce files p1.sty, p2.sty, p3.sty.

The restriction to at most 16 output streams open in a while does not mean that
you can produce at most 16 files with one \generate. In the example above only
2 streams are needed, since while s1.dtx is processed only p1.sty and p3.sty

are being generated; while reading s2.dtx only p2.sty and p3.sty; and while
reading s3.dtx file p2.sty . However example below needs 3 streams:

\generate{\file{p1.sty}{\from{s1.dtx}{foo,bar}}

\file{p2.sty}{\from{s2.dtx}{baz}

\from{s3.dtx}{baz}}

\file{p3.sty}{\from{s1.dtx}{zip}

\from{s3.dtx}{zip}}

}

Although while reading s2.dtx file p3.sty is not written it must remain open
since some parts of s3.dtx will go to it later.

Sometimes it is not possible to create a file by reading all sources once. Consider
the following example:

\generate{\file{p1.sty}{\from{s1.dtx}{head}

\from{s2.dtx}{foo}

\from{s1.dtx}{tail}}

\file{s1.drv}{\from{s1.dtx}{driver}}

}

To generate p1.sty file s1.dtx must be read twice: first time with option head,
then file s2.dtx is read and then s1.dtx again this time with option tail. Doc-
Strip handles this case correctly: if inside one \file declaration there are multiple
\fromes with the same input file this file is read multiple times.

6

If the order of \froms specified in one of your \file specifications does not
match the order of input files established by previous \files, DocStrip will raise
an error and abort. Then you may either read one of next sections or give up and
put that file in separate \generate (but then sources will be read again just for
that file).

For impatient. Try following algorithm: Find file that is generated from largest
number of sources, start writing \generate clause with this file and its sources in
proper order. Take other files that are to be generated and add them checking if
they don’t contradict order of sources for the first one. If this doesn’t work read
next sections.

For mathematicians. Relation “file A must be read before file B” is a partial
order on the set of all your source files. Each \from clause adds a chain to this
order. What you have to do is to perform a topological sort i.e. to extend partial
order to linear one. When you have done it just list your source files in \generate

in such a way that order of their first appearance in the clause matches linear
order. If this cannot be achieved read next paragraph. (Maybe future versions of
DocStrip will perform this sort automatically, so all these troubles will disappear.)

For that who must know that all. There is a diverse case when it’s not
possible to achieve proper order of reading source files. Suppose you have to
generate two files, first from s1.dtx and s3.dtx (in that order) and second from
s2.dtx and s3.dtx. Whatever way you specify this the files will be read in either
as s1 s3 s2 or s2 s3 s1. The key to solution is magical macro \needed that
marks a file as needed to be input but not directing any output from it to current
\file. In our example proper specification is:

\generate{\file{p1.sty}{\from{s1.dtx}{foo}

\needed{s2.dtx}

\from{s3.dtx}{bar}}

\file{p2.sty}{\from{s2.dtx}{zip}

\from{s3.dtx}{zap}}

}

These macros specify what should happen if a file that is to be generated\askforoverwritetrue

\askforoverwritefalse already exists. If \askforoverwritetrue is active (the default) the user is asked
whether the file should be overwritten. If however \askforoverwritefalse was
issued existing files will be overwritten silently. These switches are local and can
be issued in any place in the file even inside \generate clause (between \files
however).

You might not want to set \askforoverwritefalse in a batch file as that\askonceonly

says that it us always all right to overwrite other people’s files. However for large
installations, such as the base LATEX distribution, being asked individually about
hundreds of files is not very helpful either. A batchfile may therefore specify
\askonceonly. This means that after the first time the batchfile asks the user
a question, the user is given an option of to change the behaviour so that ‘yes’
will be automatically assumed for all future questions. This applies to any use
of the DocStrip command \Ask including, but not restricted to, the file overwrite
questions controlled by \askforoverwritetrue.

7

It is possible to add a number of lines to the output of the DocStrip pro-\preamble

\endpreamble

\postamble

\endpostamble

gram. The information you want to add to the start of the output file should be
listed between the \preamble and \endpreamble commands; the lines you want
to add to the end of the output file should be listed between the \postamble and
\endpostamble commands. Everything that DocStrip finds for both the pre- and
postamble it writes to the output file, but preceded with value of \MetaPrefix
(default is two %-characters). If you include a ^^J character in one of these lines,
everything that follows it on the same line is written to a new line in the output
file. This ‘feature’ can be used to add a \typeout or \message to the stripped
file.

Sometimes it is desirable to have different preambles for different files\declarepreamble

\declarepostamble

\usepreamble

\usepostamble

\nopreamble

\nopostamble

of a larger package (e.g., because some of them are customisable configura-
tion files and they should be marked as such). In such a case one can
say \declarepreamble\somename, then type in his/her preamble, end it with
\endpreamble, and later on \usepreamble\somename to switch to this pream-
ble. If no preamble should be used you can deploy the \nopreamble command.
This command is equivalent to saying \usepreamble\empty. The same mecha-
nism works for postambles, \use... declarations are local and can appear inside
\generate.

Commands \preamble and \postamble define and activate pre(post)ambles
named \defaultpreamble and \defaultpostamble.

The batch file commands can be put into several batch files which are then\batchinput

executed from a master batch file. This is, for example, useful if a distribution
consists of several distinct parts. You can then write individual batch files for every
part and in addition a master file that simply calls the batch files for the parts.
For this, call the individual batch files from the master file with the command
\batchinput{⟨file⟩}. Don’t use \input for this purpose, this command should
be used only for calling the DocStrip program as explained above and is ignored
when used for any other purpose.

When batch files are nested you may want to suppress certain commands in the\ifToplevel

lower-level batch files such as terminal messages. For this purpose you can use the
\ifToplevel command which executes its argument only if the current batch file
is the outermost one. Make sure that you put the opening brace of the argument
into the same line as the command itself, otherwise the DocStrip program will get
confused.

When the option stats is included in DocStrip it can write message to the\showprogress

\keepsilent terminal as each line of the input file(s) is processed. This message consists of
a single character, indicating kind of that particular line. We use the following
characters:

% Whenever an input line is a comment %-character is written to the terminal.

. Whenever a code line is encountered a .-character is written on the terminal.

/ When a number of empty lines appear in a row in the input file, at most one
of them is retained. The DocStrip program signals the removal of an empty
line with the /-character.

< When a ‘guard line’ is found in the input and it starts a block of optionally
included code, this is signalled on the terminal by showing the <-character,
together with the boolean expression of the guard.

8

> The end of a conditionally included block of code is indicated by showing
the >-character.

This feature is turned on by default when the option stats is included, otherwise
it is turned off. The feature can be toggled with the commands \showprogress
and \keepsilent.

4.2.1 Supporting old interface

Here is the old syntax for specifying what files are to be generated. It allows\generateFile

specification of just one output file.

\generateFile{⟨output⟩}{⟨ask⟩}{[\from{⟨input⟩}{⟨optionlist⟩}]*}

The meaning of ⟨output⟩, ⟨input⟩ and ⟨optionslist⟩ is just as for \generate. With
⟨ask⟩ you can instruct TEX to either silently overwrite a previously existing file
(f) or to issue a warning and ask you if it should overwrite the existing file (t) (it
overrides the \askforoverwrite setting).

The earlier version of the DocStrip program supported a different kind of com-\include

\processFile mand to tell TEX what to do. This command is less powerful than \generateFile;
it can be used when ⟨output⟩ is created from one ⟨input⟩. The syntax is:

\include{⟨optionlist⟩}
\processFile{⟨name⟩}{⟨inext⟩}{⟨outext⟩}{⟨ask⟩}

This command is based on environments where filenames are constructed of two
parts, the name and the extension, separated with a dot. The syntax of this
command assumes that the ⟨input⟩ and ⟨output⟩ share the same name and only
differ in their extension. This command is retained to be backwards compatible
with the older version of DocStrip, but its use is not encouraged.

5 Conditional inclusion of code

When you use the DocStrip program to strip comments out of TEX macro files
you have the possibility to make more than one stripped macro file from one
documented file. This is achieved by the support for optional code. The optional
code is marked in the documented file with a ‘guard’.

A guard is a boolean expression that is enclosed in < and >. It also has to
follow the % at the beginning of the line. For example:

...

%<bool>\TeX code

...

In this example the line of code will be included in ⟨output⟩ if the option bool is
present in the ⟨optionlist⟩ of the \generateFile command.

The syntax for the boolean expressions is:
⟨Expression⟩ ::= ⟨Secondary⟩ [{|, ,} ⟨Secondary⟩]*
⟨Secondary⟩ ::= ⟨Primary⟩ [& ⟨Primary⟩]*
⟨Primary⟩ ::= ⟨Terminal⟩ | !⟨Primary⟩ | (⟨Expression⟩)

9

The | stands for disjunction, the & stands for conjunction and the ! stands for
negation. The ⟨Terminal⟩ is any sequence of letters and evaluates to ⟨true⟩ iff3 it
occurs in the list of options that have to be included.

Two kinds of optional code are supported: one can either have optional code
that ‘fits’ on one line of text, like the example above, or one can have blocks of
optional code.

To distinguish both kinds of optional code the ‘guard modifier’ has been in-
troduced. The ‘guard modifier’ is one character that immediately follows the < of
the guard. It can be either * for the beginning of a block of code, or / for the end
of a block of code4. The beginning and ending guards for a block of code have to
be on a line by themselves.

When a block of code is not included, any guards that occur within that block
are not evaluated.

6 Internal functions and variables

An important consideration for LATEX development is separating out public and
internal functions. Functions and variables which are private to one module should
not be used or modified by any other module. As TEX does not have any formal
namespacing system, this requires a convention for indicating which functions in
a code-level module are public and which are private.

Using DocStrip allows internal functions to be indicated using a ‘two part’
system. Within the .dtx file, internal functions may be indicated using @@ in
place of the module name, for example

\cs_new_protected:Npn \@@_some_function:nn #1#2

{

% Some code here

}

\tl_new:N \l_@@_internal_tl

To extract the code using DocStrip, the original ‘guard’ mechanism is extended
by the introduction of the syntax %<@@=⟨module ⟩>. The ⟨module⟩ name then
replaces the @@ when the code is extracted, so that

%<*package>

%<@@=foo>

\cs_new_protected:Npn \@@_some_function:nn #1#2

{

% Some code here

}

\tl_new:N \l_@@_internal_tl

%</package>

3iff stands for ‘if and only if’
4To be compatible with the earlier version of DocStrip also + and - are supported as ‘guard

modifiers’. However, there is an incompatibility with the earlier version since a line with a +-
modified guard is not included inside a block with a guard that evaluates to false, in contrast to
the previous behaviour.

10

is extracted as

\cs_new_protected:Npn __foo_some_function:nn #1#2

{

% Some code here

}

\tl_new:N \l__foo_internal_tl

where the __ indicates that the functions and variables are internal to the foo

module.
Use @@@@ to obtain @@ in the output (@@@@@ to get @@@). For longer pieces of

code the replacement can be completely suppressed by giving an empty module
name, namely using the syntax %<@@=>.

The exact steps that are carried out by this replacement algorithm are the
following:

1. First, deal with @@@@ as a special case (by using a temporary disguise).

2. Then change all __@@ to __⟨module⟩.

3. Then change all remaining _@@ to __⟨module⟩.

4. Then change all remaining @@ to __⟨module⟩.

5. Finally, tidy up by changing each “disguised @@@@” to @@.

Thus, replacement means that @@ is replaced by the ⟨module⟩ name and that 0, 1,
or 2 underscores in front of @@ are replaced by exactly 2 underscores (whilst any
larger number of underscores is preserved).

7 Those other languages

Since TEX is an open system some of TEX packages include non-TEX files. Some
authors use DocStrip to generate PostScript headers, shell scripts or programs in
other languages. For them the comments-stripping activity of DocStrip may cause
some trouble. This section describes how to produce non-TEX files with DocStrip
effectively.

7.1 Stuff DocStrip puts in every file

First problem when producing files in “other” languages is that DocStrip adds
some bits to the beginning and end of every generated file that may not fit with
the syntax of the language in question. So we’ll study carefully what exactly goes
where.

The whole text put on beginning of file is kept in a macro defined by
\declarepreamble. Every line of input presented to \declarepreamble is
prepended with current value of \MetaPrefix. Standard DocStrip header
is inserted before your text, and macros \inFileName, \outFileName and
\ReferenceLines are used as placeholders for information which will be filled
in later (specifically for each output file). Don’t try to redefine these macros.
After

\declarepreamble\foo

11

Package FOO for use with TeX

\endpreamble

macro \foo is defined as

%%^^J

%% This is file ‘\outFileName ’,^^J

%% generated with the docstrip utility.^^J

\ReferenceLines^^J

%% ____________________________^^J

%% Package FOO for use with TeX.

You can play with it freely or even define it from scratch. To embed the preamble
in Adobe structured comments just use \edef:

\edef\foo{\perCent!PS-Adobe-3.0^^J%

\DoubleperCent\space Title: \outFileName^^J%

\foo^^J%

\DoubleperCent\space EndComments}

After that use \usepreamble\foo to select your new preamble. Everything above
works as well for postambles.

You may also prevent DocStrip from adding anything to your file, and put any
language specific invocations directly in your code:

\generate{\usepreamble\empty

\usepostamble\empty

\file{foo.ps}{\from{mypackage.dtx}{ps}}}

or alternatively \nopreamble and \nopostamble.

7.2 Meta-comments

You can change the prefix used for putting meta-comments to output files by
redefining \MetaPrefix. Its default value is \DoubleperCent. The preamble uses
value of \MetaPrefix current at time of \declarepreamble while meta-comments
in the source file use value current at time of \generate. Note that this means
that you cannot produce concurrently two files using different \MetaPrefixes.

7.3 Verbatim mode

If your programming language uses some construct that can interfere badly with
DocStrip (e.g., percent in column one) you may need a way for preventing it from
being stripped off. For that purpose DocStrip features ‘verbatim mode’.

A ‘Guard expression’ of the form %<<⟨END-TAG⟩ marks the start of a section
that will be copied verbatim upto a line containing only a percent in column 1
followed by ⟨END-TAG⟩. You can select any ⟨END-TAG⟩ you want, but note
that spaces count here. Example:

%<*myblock>

some stupid()

#computer<program>

%<<COMMENT

% These two lines are copied verbatim (including percents

12

%% even if \MetaPrefix is something different than %%).

%COMMENT

using*strange@programming<language>

%</myblock>

And the output is (when stripped with myblock defined):

some stupid()

#computer<program>

% These two lines are copied verbatim (including percents

%% even if \MetaPrefix is something different than %%).

using*strange@programming<language>

8 Producing the documentation

We provide a short driver file that can be extracted by the DocStrip program using
the conditional ‘driver’. To allow the use of docstrip.dtx as a program at IniTEX
time (e.g., to strip off its own comments) we need to add a bit of primitive code.
With this extra checking it is still possible to process this file with LATEX2ε to
typeset the documentation.

1 ⟨∗driver⟩
If \documentclass is undefined, e.g., if IniTEX or plain TEX is used for formatting,
we bypass the driver file.

We use some trickery to avoid issuing \end{document} when the \ifx con-
struction is unfinished. If condition below is true a \fi is constructed on the
fly, the \ifx is completed, and the real \fi will never be seen as it comes af-
ter \end{document}. On the other hand if condition is false TEX skips over
\csname fi\endcsname having no idea that this could stand for \fi, driver is
skipped and only then the condition completed.

Additional guard gobble prevents DocStrip from extracting these tricks to real
driver file.

2 ⟨∗gobble⟩
3 \ifx\jobname\relax\let\documentclass\undefined\fi

4 \ifx\documentclass\undefined

5 \else \csname fi\endcsname

6 ⟨/gobble⟩
Otherwise we process the following lines which will result in formatting the doc-
umentation.

7 \documentclass{ltxdoc}

8 \EnableCrossrefs

9 % \DisableCrossrefs

10 % use \DisableCrossrefs if the

11 % index is ready

12 \RecordChanges

13 % \OnlyDescription

14 \typeout{Expect some Under- and overfull boxes}

15 \begin{document}

16 \DocInput{docstrip.dtx}

17 \end{document}

18 ⟨∗gobble⟩
19 \fi

13

20 ⟨/gobble⟩
21 ⟨/driver⟩

9 The implementation

9.1 Initex initializations

Allow this program to run with initex. The Z trickery saves the need to worry
about \outer stuff in plain TEX.

22 ⟨∗initex⟩
23 \catcode‘\Z=\catcode‘\%

24 \ifnum13=\catcode‘\~{\egroup\else

25 \catcode‘\Z=9

26 Z

27 Z \catcode‘\{=1 \catcode‘\}=2

28 Z \catcode‘\#=6 \catcode‘\^=7

29 Z \catcode‘\@=11 \catcode‘\^^L=13

30 Z \let\bgroup={ \let\egroup=}

31 Z

32 Z \dimendef\z@=10 \z@=0pt \chardef\@ne=1 \countdef\m@ne=22 \m@ne=-1

33 Z \countdef\count@=255

34 Z

35 Z \def\wlog{\immediate\write\m@ne} \def\space{ }

36 Z

37 Z \count10=22 % allocates \count registers 23, 24, ...

38 Z \count15=9 % allocates \toks registers 10, 11, ...

39 Z \count16=-1 % allocates input streams 0, 1, ...

40 Z \count17=-1 % allocates output streams 0, 1, ...

41 Z

42 Z \def\alloc@#1#2#3{\advance\count1#1\@ne#2#3\count1#1\relax}

43 Z

44 Z \def\newcount{\alloc@0\countdef} \def\newtoks{\alloc@5\toksdef}

45 Z \def\newread{\alloc@6\chardef} \def\newwrite{\alloc@7\chardef}

46 Z

47 Z \def\newif#1{%

48 Z \count@\escapechar \escapechar\m@ne

49 Z \let#1\iffalse

50 Z \@if#1\iftrue

51 Z \@if#1\iffalse

52 Z \escapechar\count@}

53 Z \def\@if#1#2{%

54 Z \expandafter\def\csname\expandafter\@gobbletwo\string#1%

55 Z \expandafter\@gobbletwo\string#2\endcsname

56 Z {\let#1#2}}

57 Z

58 Z \def\@gobbletwo#1#2{}

59 Z \def\@gobblethree#1#2#3{}

60 Z

61 Z \def\loop#1\repeat{\def\body{#1}\iterate}

62 Z \def\iterate{\body \let\next\iterate \else\let\next\relax\fi \next}

63 Z \let\repeat\fi

64 Z

65 Z \def\empty{}

14

66 Z

67 Z \def\tracingall{\tracingcommands2 \tracingstats2

68 Z \tracingpages1 \tracingoutput1 \tracinglostchars1

69 Z \tracingmacros2 \tracingparagraphs1 \tracingrestores1

70 Z \showboxbreadth 10000 \showboxdepth 10000 \errorstopmode

71 Z \errorcontextlines 10000 \tracingonline1 }

72 Z

73 \bgroup}\fi\catcode‘\Z=11

74 \let\bgroup={ \let\egroup=}

75 ⟨/initex⟩

9.2 Declarations and initializations

In order to be able to include the @-sign in control sequences its category code
is changed to ⟨letter⟩. The ‘program’ guard here allows most of the code to be
excluded when extracting the driver file.

76 ⟨∗program⟩
77 \catcode‘\@=11

When we want to write multiple lines to the terminal with one statement, we
need a character that tells TEX to break the lines. We use ^^J for this purpose.

78 \newlinechar=‘\^^J

Reset the catcodes of 8-bit characters so that processing a .ins file with plain
TEX or LATEX both work.

79 \count@=128\relax

80 \loop

81 \catcode\count@ 12\relax

82 \ifnum\count@ <255\relax

83 \advance\count@\@ne

84 \repeat

9.2.1 Switches

\ifGenerate The program will check if a file of the same name as the file it would be creating
already exists. The switch \ifGenerate is used to indicate if the stripped file has
to be generated.

85 \newif\ifGenerate

\ifContinue The switch \ifContinue is used in various places in the program to indicate if a
\loop has to end.

86 \newif\ifContinue

\ifForlist The program contains an implementation of a for-loop, based on plain TEX’s \loop
macros. The implementation needs a switch to terminate the loop.

87 \newif\ifForlist

\ifDefault The switch \ifDefault is used to indicate whether the default batch file has to
be used.

88 \newif\ifDefault

\ifMoreFiles The switch \ifMoreFiles is used to decide if the user wants more files to be
processed. It is used only in interactive mode; initially it evaluates to ⟨true⟩.

89 \newif\ifMoreFiles \MoreFilestrue

15

\ifaskforoverwrite The switch \askforoverwrite is used to decide if the user should be asked when
a file is to be overwritten.

90 \newif\ifaskforoverwrite \askforoverwritetrue

9.2.2 Count registers

\blockLevel Optionally included blocks of code can be nested. The counter \blockLevel will
be used to keep track of the level of nesting. Its initial value is zero.

91 \newcount\blockLevel \blockLevel\z@

\emptyLines The count register \emptyLines is used to count the number of consecutive empty
input lines. Only the first will be copied to the output file.

92 \newcount\emptyLines \emptyLines \z@

\processedLines

\commentsRemoved

\commentsPassed

\codeLinesPassed

To be able to provide the user with some statistics about the stripping process
four counters are allocated if the statistics have been included when this pro-
gram was DocStripped. The number of lines processed is stored in the counter
\processedLines. The number of lines containing comments that are not writ-
ten on the output file is stored in the counter \commentsRemoved; the number
of comments copied to the output file is stored in the counter \commentsPassed.
The number of lines containing macro code that are copied to the output file is
stored in the counter \codeLinesPassed.

93 ⟨∗stats⟩
94 \newcount\processedLines \processedLines \z@

95 \newcount\commentsRemoved \commentsRemoved \z@

96 \newcount\commentsPassed \commentsPassed \z@

97 \newcount\codeLinesPassed \codeLinesPassed \z@

\TotalprocessedLines

\TotalcommentsRemoved

\TotalcommentsPassed

\TotalcodeLinesPassed

When more than one file is processed and when statistics have been included we
provide the user also with information about the total amount of lines processed.
For this purpose four more count registers are allocated here.

98 \newcount\TotalprocessedLines \TotalprocessedLines \z@

99 \newcount\TotalcommentsRemoved \TotalcommentsRemoved \z@

100 \newcount\TotalcommentsPassed \TotalcommentsPassed \z@

101 \newcount\TotalcodeLinesPassed \TotalcodeLinesPassed \z@

102 ⟨/stats⟩

\NumberOfFiles When more than one file is processed, the number of files is stored in the count
register \NumberOfFiles.

103 \newcount\NumberOfFiles \NumberOfFiles\z@

9.2.3 I/O streams

\inFile For reading the file with documented TEX-code, an input stream \inFile is allo-
cated.

104 \newread\inFile

\ttyin

\ttyout

Communication with the user goes through (nonexistent) stream 16.

105 \chardef\ttyin16

106 \chardef\ttyout16

16

\inputcheck This stream is only used for checking for existence of files.

107 \newread\inputcheck

\ifToplevel Execute the argument if current batch file is the outermost one. Otherwise sup-
press it.

108 \newif\iftopbatchfile \topbatchfiletrue

109 \def\ifToplevel{\relax\iftopbatchfile

110 \expandafter\iden \else \expandafter\@gobble\fi}

\batchinput When the file docstrip.tex is read because of an \input statement in a batch
file we have to prevent an endless loop (well, limited by TEX’s stack). Therefore
we save the original primitive \input and define a new macro with an argument
delimited by ␣ (i.e. a space) that just gobbles the argument. Since the end-of-line
character is converted by TEX to a space. This means that \input is not available
as a command within batch files.

\@@input We therefore keep a copy of the original under the name \@@input for internal
use. If DocStrip runs under LATEX this command is already defined, so we make a
quick test.

111 \ifx\undefined\@@input \let\@@input\input\fi

To allow the nesting of batch files the \batchinput command is provided it
takes one argument, the name of the batch file to switch to.

112 \def\batchinput#1{%

We start a new group and locally redefine \batchFile to hold the new batch
file name. We toggle the \iftopbatchfile switch since this definitely is not top
batch file.

113 \begingroup

114 \def\batchfile{#1}%

115 \topbatchfilefalse

116 \Defaultfalse

117 \usepreamble\org@preamble

118 \usepostamble\org@postamble

119 \let\destdir\WriteToDir

After this we can simply call \processbatchFile which will open the new batch
file and read it until it is exhausted. Note that if the batch file is not available, or
misspelled this routine will produce a warning and return.

120 \processbatchFile

The value of \batchfile as well as local definitions of preambles, directories etc.
will be restored at this closing \endgroup, so that further processing continues in
the calling batch file.

121 \endgroup

122 }

\skip@input And here is the promised redefinition of \input:

123 \def\skip@input#1 {}

124 \let\input\skip@input

17

9.2.4 Empty macros and macros that expand to a string

\guardStack Because blocks of code that will conditionally be included in the output can be
nested, a stack is maintained to keep track of these blocks. The main reason for
this is that we want to be able to check if the blocks are properly nested. The
stack itself is stored in \guardStack.

125 \def\guardStack{}

\blockHead The macro \blockHead is used for storing and retrieving the boolean expression
that starts a block.

126 \def\blockHead{}

\yes

\y

When the user is asked a question that he has to answer with either ⟨yes⟩ or ⟨no⟩,
his response has to be evaluated. For this reason the macros \yes and \y are
defined.

127 \def\yes{yes}

128 \def\y{y}

\n We also define \n for use in DocStrip command files.

129 \def\n{n}

\Defaultbatchile When the DocStrip program has to process a batch file it can look for a batch file
with a default name. This name is stored in \DefaultbatchFile.

130 \def\DefaultbatchFile{docstrip.cmd}

\perCent

\DoubleperCent

\MetaPrefix

To be able to display percent-signs on the terminal, a % with category code 12
is stored in \perCent and \DoubleperCent. The macro \MetaPrefix is put on
beginning of every meta-comment line. It is defined indirect way since some ap-
plications need redefining it.

131 {\catcode‘\%=12

132 \gdef\perCent{%}

133 \gdef\DoubleperCent{%%}

134 }

135 \let\MetaPrefix\DoubleperCent

In order to allow formfeeds in the input we define a one-character control sequence
^^L.

136 \def^^L{ }

The only result of using \Name is slowing down execution since its typical
use (e.g., \Name\def{foo bar}...) has exactly the same number of tokens as its
expansion. However I think that it’s easier to read. The meaning of \Name as a
black box is: “construct a name from second parameter and then pass it to your
first parameter as a parameter”.

\@stripstring is used to get tokens building name of a macro without leading
backslash.

137 \def\Name#1#2{\expandafter#1\csname#2\endcsname}

138 \def\@stripstring{\expandafter\@gobble\string}

18

9.2.5 Miscellaneous variables

\sourceFileName The macro \sourceFileName is used to store the name of the current input file.

\batchfile The macro \batchfile is used to store the name of the batch file.

\inLine The macro \inLine is used to store the lines, read from the input file, before
further processing.

\answer When some interaction with the user is needed the macro \answer is used to store
his response.

\tmp Sometimes something has to be temporarily stored in a control sequence. For
these purposes the control sequence \tmp is used.

9.3 Support macros

9.3.1 The stack mechanism

It is possible to have ‘nested guards’. This means that within a block of optionally
included code a subgroup is only included when an additional option is specified.
To keep track of the nesting of the guards the currently ‘open’ guard can be pushed
on the stack \guardStack and later popped off the stack again. The macros that
implement this stack mechanism are loosely based on code that is developed in
the context of the LATEX3 project.

To be able to implement a stack mechanism we need a couple of support
macros.

\eltStart

\eltEnd

The macros \eltStart and \eltEnd are used to delimit a stack element. They
are both empty.

139 \def\eltStart{}

140 \def\eltEnd{}

\qStop The macro \qStop is a so-called ‘quark’, a macro that expands to itself5.

141 \def\qStop{\qStop}

\pop The macro \pop⟨stack⟩⟨cs⟩ ‘pops’ the top element from the stack. It assigns the
value of the top element to ⟨cs⟩ and removes it from ⟨stack⟩. When ⟨stack⟩ is
empty a warning is issued and ⟨cs⟩ is assigned an empty value.

142 \def\pop#1#2{%

143 \ifx#1\empty

144 \Msg{Warning: Found end guard without matching begin}%

145 \let#2\empty

146 \else

To be able to ‘peel’ off the first guard we use an extra macro \popX that receives
both the expanded and the unexpanded stack in its arguments. The expanded
stack is delimited with the quark \qStop.

147 \def\tmp{\expandafter\popX #1\qStop #1#2}%

148 \expandafter\tmp\fi}

5The concept of ‘quarks’ is developed for the LATEX3 project.

19

\popX When the stack is expanded the elements are surrounded with \eltStart and
\eltEnd. The first element of the stack is assigned to #4.

149 \def\popX\eltStart #1\eltEnd #2\qStop #3#4{\def#3{#2}\def#4{#1}}

\push Guards can be pushed on the stack using the macro \push⟨stack⟩⟨guard⟩. Again
we need a secondary macro (\pushX) that has both the expanded and the unex-
panded stack as arguments.

150 \def\push#1#2{\expandafter\pushX #1\qStop #1{\eltStart #2\eltEnd}}

\pushX The macro \pushX picks up the complete expansion of the stack as its first argu-
ment and places the guard in #3 on the ‘top’.

151 \def\pushX #1\qStop #2#3{\def #2{#3#1}}

9.3.2 Programming structures

\forlist When the program is used in interactive mode the user can supply a list of files
that have to be processed. In order to process this list a for-loop is needed.
This implementation of such a programming construct is based on the use of the
\loop{⟨body⟩}\repeat macro that is defined in plain TEX. The syntax for this
loop is:

\for⟨control sequence⟩ := ⟨list⟩ \do
⟨body⟩
\od

The ⟨list⟩ should be a comma separated list.
The first actions that have to be taken are to set the switch \ifForlist to

⟨true⟩ and to store the loop condition in the macro \ListCondition. This is done
using an \edef to allow for a control sequence that contains a ⟨list⟩.
152 \def\forlist#1:=#2\do#3\od{%

153 \edef\ListCondition{#2}%

154 \Forlisttrue

Then we start the loop. We store the first element from the \ListCondition in
the macro that was supplied as the first argument to \forlist. This element is
then removed from the \ListCondition.

155 \loop

156 \edef#1{\expandafter\FirstElt\ListCondition,\empty.}%

157 \edef\ListCondition{\expandafter\OtherElts\ListCondition,\empty.}%

When the first element from the ⟨list⟩ is empty, we are done processing, so we
switch \ifForlist to ⟨false⟩. When it is not empty we execute the third argument
that should contain TEX commands to execute.

158 \ifx#1\empty \Forlistfalse \else#3\fi

Finally we test the switch \ifForlist to decide whether the loop has to be con-
tinued.

159 \ifForlist

160 \repeat}

\FirstElt The macro \FirstElt is used to get the first element from a comma-separated
list.

161 \def\FirstElt#1,#2.{#1}

20

\OtherElts The macro \OtherElts is used to get all elements but the first element from a
comma-separated list.

162 \def\OtherElts#1,#2.{#2}

\whileswitch When the program is used in interactive mode the user might want to process
several files with different options or extensions. This goal could be reached by
running the program several times, but it is more user-friendly to ask if he would
like to process more files when we are done processing his last request. To ac-
complish this we need the implementation of a while-loop. Again plain TEX’s
\loop{⟨body⟩}\repeat is used to implement this programming structure.

The syntax for this loop is:

\whileswitch⟨switch⟩ \fi ⟨list⟩ {⟨body⟩}

The first argument to this macro has to be a switch, defined using \newif; the
second argument contains the statements to execute while the switch evaluates to
⟨true⟩.
163 \def\whileswitch#1\fi#2{#1\loop#2#1\repeat\fi}

9.3.3 Output streams allocator

For each of sixteen output streams available we have a macro named \s@0 through
\s@15 saying if the stream is assigned to a file (1) or not (0). Initially all streams
are not assigned.

We also declare 16 counters which will be needed by the conditional code
inclusion algorithm.

164 \ifx\@tempcnta\undefined \newcount\@tempcnta \fi

165 \@tempcnta=0

166 \loop

167 \Name\chardef{s@\number\@tempcnta}=0

168 \csname newcount\expandafter\endcsname%

169 \csname off@\number\@tempcnta\endcsname

170 \advance\@tempcnta1

171 \ifnum\@tempcnta<16\repeat

We will use The TEXbook style list to search through streams.

172 \let\s@do\relax

173 \edef\@outputstreams{%

174 \s@do\Name\noexpand{s@0}\s@do\Name\noexpand{s@1}%

175 \s@do\Name\noexpand{s@2}\s@do\Name\noexpand{s@3}%

176 \s@do\Name\noexpand{s@4}\s@do\Name\noexpand{s@5}%

177 \s@do\Name\noexpand{s@6}\s@do\Name\noexpand{s@7}%

178 \s@do\Name\noexpand{s@8}\s@do\Name\noexpand{s@9}%

179 \s@do\Name\noexpand{s@10}\s@do\Name\noexpand{s@11}%

180 \s@do\Name\noexpand{s@12}\s@do\Name\noexpand{s@13}%

181 \s@do\Name\noexpand{s@14}\s@do\Name\noexpand{s@15}%

182 \noexpand\@nostreamerror

183 }

\@nostreamerror

\@streamfound

When \@outputstreams is executed \s@do is defined to do something on condition
of some test. If condition always fails macro \@nostreamerror on the end of the
list causes an error. When condition succeeds \@streamfound is called, which

21

gobbles rest of the list including the ending \@nostreamerror. It also gobbles
\fi ending the condition, so the \fi is reinserted.

184 \def\@nostreamerror{\errmessage{No more output streams!}}

185 \def\@streamfound#1\@nostreamerror{\fi}

\@stripstr is auxiliary macro eating characters \s@ (backslash,s,@). It is
defined in somewhat strange way since \s@ must have all category code 12 (other).
This macro is used to extract stream numbers from stream names.

186 \bgroup\edef\x{\egroup

187 \def\noexpand\@stripstr\string\s@{}}

188 \x

\quote@name A macro copied from ltfiles.dtx in order to be able to allow spaces in filenames.

189 \def\quote@name#1{"\quote@@name#1\@gobble""}

190 \def\quote@@name#1"{#1\quote@@name}

\StreamOpen

\StreamPut

\StreamClose

Here is stream opening operator. Its parameter should be a macro named the
same as the external file being opened. E.g., to write to file foo.tex use
\StreamOpen\foo, then \StreamPut\foo and \StreamClose\foo.

191 \chardef\stream@closed=16

192 \def\StreamOpen#1{%

193 \chardef#1=\stream@closed

194 \def\s@do##1{\ifnum##1=0

195 \chardef#1=\expandafter\@stripstr\string##1 %

196 \global\chardef##1=1 %

197 \edef\q@curr@file{%

198 \expandafter\expandafter\expandafter\quote@name

199 \expandafter\expandafter\expandafter{\csname pth@\@stripstring#1\endcsname}}

200 \immediate\openout#1=\q@curr@file\relax

201 \@streamfound

202 \fi}

203 \@outputstreams

204 }

205 \def\StreamClose#1{%

206 \immediate\closeout#1%

207 \def\s@do##1{\ifnum#1=\expandafter\@stripstr\string##1 %

208 \global\chardef##1=0 %

209 \@streamfound

210 \fi}

211 \@outputstreams

212 \chardef#1=\stream@closed

213 }

214 \def\StreamPut{\immediate\write}

9.3.4 Input and Output

\maybeMsg

\showprogress

\keepsilent

When this program is used it can optionally show its progress on the terminal.
In that case it will write a special character to the terminal (and the transcript
file) for each input line. This option is on by default when statistics are in-
cluded in docstrip.tex. It is off when statistics are excluded. The commands
\showprogress and \keepsilent can be used to choose otherwise.

215 \def\showprogress{\let\maybeMsg\message}

22

216 \def\keepsilent{\let\maybeMsg\@gobble}

217 ⟨∗stats⟩
218 \showprogress

219 ⟨/stats⟩
220 ⟨-stats⟩\keepsilent

\Msg For displaying messages on the terminal the macro \Msg is defined to write im-
mediately to \ttyout.

221 \def\Msg{\immediate\write\ttyout}

\Ask The macro \Ask{⟨cs⟩}{⟨string⟩} is a slightly modified copy of the LATEX macro
\typein. It is used to ask the user a question. The ⟨string⟩ will be displayed on
his terminal and the response will be stored in the ⟨cs⟩. The trailing space left
over from the carriage return is stripped off by the macro \strip. If the user just
types a carriage return, the result will be an empty macro.

222 \def\iden#1{#1}

223 \def\strip#1#2 \@gobble{\def #1{#2}}

224 \def\@defpar{\par}

225 \def\Ask#1#2{%

226 \message{#2}\read\ttyin to #1\ifx#1\@defpar\def#1{}\else

227 \iden{\expandafter\strip

228 \expandafter#1#1\@gobble\@gobble} \@gobble\fi}

\OriginalAsk

229 \let\OriginalAsk=\Ask

\askonceonly

230 \def\askonceonly{%

231 \def\Ask##1##2{%

232 \OriginalAsk{##1}{##2}%

233 \global\let\Ask\OriginalAsk

234 \Ask\noprompt{%

235 By default you will be asked this question for every file.^^J%

236 If you enter ‘y’ now,^^J%

237 I will assume ‘y’ for all future questions^^J%

238 without prompting.}%

239 \ifx\y\noprompt\let\noprompt\yes\fi

240 \ifx\yes\noprompt\gdef\Ask####1####2{\def####1{y}}\fi}}

9.3.5 Miscellaneous

\@gobble A macro that has an argument and puts it in the bitbucket.

241 \def\@gobble#1{}

\Endinput When a doc file contains a \endinput on a line by itself this normally means
that anything following in this file should be ignored. Therefore we need a macro
containing \endinput as its replacement text to check this against \inLine (the
current line from the current input file). Of course the backslash has to have the
correct \catcode. One way of doing this is feeding \\ to the \string operation
and afterwards removing one of the \ characters.

242 \edef\Endinput{\expandafter\@gobble\string\\endinput}

23

\makeOther During the process of reading a file with TEX code the category code of all spe-
cial characters has to be changed to ⟨other⟩. The macro \makeOther serves this
purpose.

243 \def\makeOther#1{\catcode‘#1=12\relax}

\end For now we want the DocStrip program to be compatible with both plain TEX and
LATEX. LATEX hides plain TEX’s \end command and calls it \@@end. We unhide it
here.

244 \ifx\undefined\@@end\else\let\end\@@end\fi

\@addto A macro extending macro’s definition. The trick with \csname is necessary to get
around \newtoks being outer in plain TEX and LATEX version 2.09.

245 \ifx\@temptokena\undefined \csname newtoks\endcsname\@temptokena\fi

246 \def\@addto#1#2{%

247 \@temptokena\expandafter{#1}%

248 \edef#1{\the\@temptokena#2}}

\@ifpresent This macro checks if its first argument is present on a list passed as the second
argument. Depending on the result it executes either its third or fourth argument.

249 \def\@ifpresent#1#2#3#4{%

250 \def\tmp##1#1##2\qStop{\ifx!##2!}%

251 \expandafter\tmp#2#1\qStop #4\else #3\fi

252 }

\tospaces This macro converts its argument delimited with \secapsot to appropriate num-
ber of spaces. We need this for smart displaying messages on the screen.

\@spaces are used when we need many spaces in a row.

253 \def\tospaces#1{%

254 \ifx#1\secapsot\secapsot\fi\space\tospaces}

255 \def\secapsot\fi\space\tospaces{\fi}

256 \def\@spaces{\space\space\space\space\space}

\uptospace This macro extracts from its argument delimited with \qStop part up to first
occurrence of space.

257 \def\uptospace#1 #2\qStop{#1}

\afterfi This macro can be used in conditionals to perform some actions (its first parame-
ter) after the condition is completed (i.e. after reading the matching \fi. Second
parameter is used to gobble the rest of \if ... \fi construction (some \else

maybe). Note that this won’t work in nested \ifs!

258 \def\afterfi#1#2\fi{\fi#1}

\@ifnextchar This is one of LATEX’s macros not defined by plain. My devious definition differs
from the standard one but functionality is the same.

259 \def\@ifnextchar#1#2#3{\bgroup

260 \def\reserved@a{\ifx\reserved@c #1 \aftergroup\@firstoftwo

261 \else \aftergroup\@secondoftwo\fi\egroup

262 {#2}{#3}}%

263 \futurelet\reserved@c\@ifnch

264 }

265 \def\@ifnch{\ifx \reserved@c \@sptoken \expandafter\@xifnch

24

266 \else \expandafter\reserved@a

267 \fi}

268 \def\@firstoftwo#1#2{#1}

269 \def\@secondoftwo#1#2{#2}

270 \iden{\let\@sptoken= } %

271 \iden{\def\@xifnch} {\futurelet\reserved@c\@ifnch}

\kernel@ifnextchar The 2003/12/01 release of LATEX incorporated this macro to avoid problems with
amsmath but this also means that we have to perform the same trick here when
people use LATEX on a installation file containing \ProvidesFile.

272 \let\kernel@ifnextchar\@ifnextchar

9.4 The evaluation of boolean expressions

For clarity we repeat here the syntax for the boolean expressions in a somewhat
changed but equivalent way:

⟨Expression⟩ ::= ⟨Secondary⟩ | ⟨Secondary⟩ {|, ,} ⟨Expression⟩
⟨Secondary⟩ ::= ⟨Primary⟩ | ⟨Primary⟩ & ⟨Secondary⟩
⟨Primary⟩ ::= ⟨Terminal⟩ | !⟨Primary⟩ | (⟨Expression⟩)

The | stands for disjunction, the & stands for conjunction and the ! stands for
negation. The ⟨Terminal⟩ is any sequence of letters and evaluates to ⟨true⟩ iff it
occurs in the list of options that have to be included.

Since we can generate multiple output files from one input, same guard ex-
pressions can be computed several times with different options. For that reason
we first “compile” the expression to the form of one parameter macro \Expr ex-
panding to nested \ifs that when given current list of options produces 1 or 0
as a result. The idea is to say \if1\Expr{⟨current set of options⟩}...\fi for all
output files.

Here is a table recursively defining translations for right sides of the grammar.
τ(X) denotes translation of X.

τ(⟨Terminal⟩) = \t@<Terminal>,#1,<Terminal>,\qStop

τ(!⟨Primary⟩) = \if1 τ(⟨Primary⟩) 0\else1\fi
τ((⟨Expression⟩)) = τ(⟨Expression⟩)

τ(⟨Primary⟩&⟨Secondary⟩) = \if0 τ(⟨Primary⟩) 0\else τ(⟨Secondary⟩) \fi
τ(⟨Secondary⟩|⟨Expression⟩) = \if1 τ(⟨Secondary⟩) 1\else τ(⟨Expression⟩) \fi

\t@<Terminal> denotes macro with name constructed from t@ with appended
tokens of terminal. E.g., for terminal foo the translation would be

\t@foo,#1,foo,\qStop

This will end up in definition of \Expr, so #1 here will be substituted by current
list of options when \Expr is called. Macro \t@foo would be defined as

\def\t@foo#1,foo,#2\qStop{\ifx>#2>0\else1\fi}

When called as above this will expand to 1 if foo is present on current list of
options and to 0 otherwise.

25

Macros below work in “almost expand-only” mode i.e. expression is analyzed
only by expansion but we have to define some macros on the way (e.g., \Expr and
\t@foo).

The first parameter of each of these macros is “continuation” (in the sense
similar to the language Scheme). Continuation is a function of at least one argu-
ment (parameter) being the value of previous steps of computation. For example
macro \Primary constructs translation of ⟨Primary⟩ expression. When it decides
that expression is completed it calls its continuation (its first argument) passing
to it whole constructed translation. Continuation may expect more arguments if
it wants to see what comes next on the input.

We will perform recursive descent parse, but definitions will be presented in
bottom-up order.

\Terminal ⟨Terminal⟩s are recognized by macro \Terminal. The proper way of calling it is
\Terminal{⟨current continuation⟩}{}. Parameters are: continuation, ⟨Terminal⟩
so far and next character from the input. Macro checks if #3 is one of terminal-
ending characters and then takes appropriate actions. Since there are 7 ending
chars and probably one \csname costs less than 7 nested \ifs we construct a name
and check if it is defined.

We must expand \ifx completely before taking next actions so we use
\afterfi.

273 \def\Terminal#1#2#3{%

274 \expandafter\ifx\csname eT@#3\endcsname\relax

If condition is true #3 belongs to current ⟨Terminal⟩ so we append it to ⟨Terminal⟩-
so-far and call \Terminal again.

275 \afterfi{\Terminal{#1}{#2#3}}\else

When condition is false it’s time to end the ⟨Terminal⟩ so we call macro
\TerminalX. Next character is reinserted to the input.

In both cases continuation is passed unchanged.

276 \afterfi{\TerminalX{#1}{#2}#3}\fi

277 }

\eT@ Here we define macros marking characters that cannot appear inside terminal.
The value is not important as long as it is different from \relax.

278 \Name\let{eT@>}=1

279 \Name\let{eT@&}=1 \Name\let{eT@!}=1

280 \Name\let{eT@|}=1 \Name\let{eT@,}=1

281 \Name\let{eT@(}=1 \Name\let{eT@)}=1

\TerminalX This macro should end scanning of ⟨Terminal⟩. Parameters are continuation and
gathered tokens of ⟨Terminal⟩.

Macro starts by issuing an error message if ⟨Terminal⟩ is empty.

282 \def\TerminalX#1#2{%

283 \ifx>#2> \errmessage{Error in expression: empty terminal}\fi

Then a macro is constructed for checking presence of ⟨Terminal⟩ in options list.

284 \Name\def{t@#2}##1,#2,##2\qStop{\ifx>##2>0\else1\fi}%

And then current continuation is called with translation of ⟨Terminal⟩ according
to formula

τ(⟨Terminal⟩) = \t@<Terminal>,#1,<Terminal>,\qStop

26

285 #1{\Name\noexpand{t@#2},##1,#2,\noexpand\qStop}%

286 }

\Primary Parameters are continuation and next character from the input.
According to the syntax ⟨Primari⟩es can have three forms. This makes us use

even more dirty tricks than usual. Note the \space after a series of \ifxs. This
series produces an one digit number of case to be executed. The number is given
to \ifcase and \space stops TEX scanning for a ⟨number⟩. Use of \ifcase gives
possibility to have one of three actions selected without placing them in nested
\ifs and so to use \afterfi.

287 \def\Primary#1#2{%

288 \ifcase \ifx!#20\else\ifx(#21\else2\fi\fi\space

First case is for ! i.e. negated ⟨Primary⟩. In this case we call \Primary recursively
but we create new continuation: macro \NPrimary that will negate result passed
by \Primary and pass it to current continuation (#1).

289 \afterfi{\Primary{\NPrimary{#1}}}\or

When next character is (we call \Expression giving it as continuation macro
\PExpression which will just pass the result up but ensuring first that a) comes
next.

290 \afterfi{\Expression{\PExpression{#1}}}\or

Otherwise we start a ⟨Terminal⟩. #2 is not passed as ⟨Terminal⟩-so-far but rein-
serted to input since we didn’t check if it can appear in a ⟨Terminal⟩.
291 \afterfi{\Terminal{#1}{}#2}\fi

292 }

\NPrimary Parameters are continuation and previously computed ⟨Primary⟩.
This macro negates result of previous computations according to the rule

τ(!⟨Primary⟩) = \if1 τ(⟨Primary⟩) 0\else1\fi

293 \def\NPrimary#1#2{%

294 #1{\noexpand\if1#20\noexpand\else1\noexpand\fi}%

295 }

\PExpression Parameters: continuation, ⟨Expression⟩, next character from input. We are check-
ing if character is) and then pass unchanged result to our continuation.

296 \def\PExpression#1#2#3{%

297 \ifx)#3\else

298 \errmessage{Error in expression: expected right parenthesis}\fi

299 #1{#2}}

\Secondary Each ⟨Secondary⟩ expression starts with ⟨Primary⟩. Next checks will be performed
by \SecondaryX.

300 \def\Secondary#1{%

301 \Primary{\SecondaryX{#1}}}

\SecondaryX Parameters: continuation, translation of ⟨Primary⟩, next character. We start by
checking if next character is &.

302 \bgroup\catcode‘\&=12

303 \gdef\SecondaryX#1#2#3{%

304 \ifx%

27

If it is we should parse next ⟨Secondary⟩ and then combine it with results so far.
Note that \SecondaryXX will have 3 parameters.

305 \afterfi{\Secondary{\SecondaryXX{#1}{#2}}}\else

Otherwise ⟨Secondary⟩ turned out to be just ⟨Primary⟩. We call continuation
passing to it translation of that ⟨Primary⟩ not forgetting to reinsert #3 to the
input as it does not belong here.

306 \afterfi{#1{#2}#3}\fi

307 }

308 \egroup

\SecondaryXX Parameters: continuation, translation of ⟨Primary⟩, translation of ⟨Secondary⟩.
We construct translation of whole construction according to the rule:

τ(⟨Primary⟩&⟨Secondary⟩) = \if0 τ(⟨Primary⟩) 0\else τ(⟨Secondary⟩) \fi

and pass it to our continuation.

309 \def\SecondaryXX#1#2#3{%

310 #1{\noexpand\if0#20\noexpand\else#3\noexpand\fi}}

\Expression Every ⟨Expression⟩ starts with ⟨Secondary⟩. We construct new continuation and
pass it to \Secondary.

311 \def\Expression#1{%

312 \Secondary{\ExpressionX{#1}}}

\ExpressionX Parameters: continuation, translation of ⟨Secondary⟩, next character. We perform
check if character is | or ,.

313 \def\ExpressionX#1#2#3{%

314 \if0\ifx|#31\else\ifx,#31\fi\fi0

If it is not ⟨Expression⟩ is just a ⟨Secondary⟩. We pass its translation to continu-
ation and reinsert #3.

315 \afterfi{#1{#2}#3}\else

If we are dealing with complex ⟨Expression⟩ we should parse another \Expression
now.

316 \afterfi{\Expression{\ExpressionXX{#1}{#2}}}\fi

317 }

\ExpressionXX Parameters: continuation, translation of ⟨Secondary⟩, translation of ⟨Expression⟩.
We finish up translating of ⟨Expression⟩ according to the formula:

τ(⟨Secondary⟩|⟨Expression⟩) = \if1 τ(⟨Secondary⟩) 1\else τ(⟨Expression⟩) \fi

318 \def\ExpressionXX#1#2#3{%

319 #1{\noexpand\if1#21\noexpand\else#3\noexpand\fi}}

\StopParse Here is initial continuation for whole parse process. It will be used by \Evaluate.
Note that we assume that expression has > on its end. This macro eventually
defines \Expr. Parameters: translation of whole ⟨Expression⟩ and next character
from input.

320 \def\StopParse#1#2{%

321 \ifx>#2 \else\errmessage{Error in expression: spurious #2}\fi

322 \edef\Expr##1{#1}}

28

\Evaluate This macro is used to start parsing. We call \Expression with continuation
defined above. On end of expression we append a >.

323 \def\Evaluate#1{%

324 \Expression\StopParse#1>}

9.5 Processing the input lines

\normalLine The macro \normalLine writes its argument (which has to be delimited with
\endLine) on all active output files i.e. those with off-counters equal to zero. It
uses the search-and-replace macro \replaceModuleInLine to replace any occur-
rences of @@ with the current module name. If statistics are included, the counter
\codeLinesPassed is incremented by 1.

325 \def\normalLine#1\endLine{%

326 ⟨∗stats⟩
327 \advance\codeLinesPassed\@ne

328 ⟨/stats⟩
329 \maybeMsg{.}%

330 \def\inLine{#1}%

331 \replaceModuleInLine

332 \let\do\putline@do

333 \activefiles

334 }

\putline@do This is a value for \do when copying line to output files.

335 \def\putline@do#1#2#3{%

336 \StreamPut#1{\inLine}}

\removeComment The macro \removeComment throws its argument (which has to be delimited with
\endLine) away. When statistics are included in the program the removed com-
ment is counted.

337 %

338 \def\removeComment#1\endLine{%

339 ⟨∗stats⟩
340 \advance\commentsRemoved\@ne

341 ⟨/stats⟩
342 \maybeMsg{\perCent}}

\putMetaComment If a line starts with two consecutive percent signs, it is considered to be a Meta-
Comment . Such a comment line is passed on to the output file unmodified.

343 \bgroup\catcode‘\%=12

344 \iden{\egroup

345 \def\putMetaComment%}#1\endLine{%

If statistics are included the line is counted.

346 ⟨∗stats⟩
347 \advance\commentsPassed\@ne

348 ⟨/stats⟩
The macro \putMetaComment has one argument, delimited with \endLine. It
brings the source line with %% stripped. We prepend to it \MetaPrefix (which
can be different from %%) and send the line to all active files.

349 \edef\inLine{\MetaPrefix#1}%

350 \let\do\putline@do

29

351 \activefiles

352 }

\processLine Each line that is read from the input stream has to be processed to see if it has
to be written on the output stream. This task is performed by calling the macro
\processLine. In order to do that, it needs to check whether the line starts with
a ‘%’. Therefore the macro is globally defined within a group. Within this group
the category code of ‘%’ is changed to 12 (other). Because a comment character is
needed, the category code of ‘*’ is changed to 14 (comment character).

The macro increments counter \processedLines by 1 if statistics are included.
We cannot include this line with %<*stats> since the category of % is changed and
the file must be loadable unstripped. So the whole definition is repeated embedded
in guards.

The next token from the input stream is passed in #1. If it is a ‘%’ further
processing has to be done by \processLineX; otherwise this is normal (not com-
mented out) line.

In either case the character read is reinserted to the input as it may have to
be written out.

353 ⟨∗!stats⟩
354 \begingroup

355 \catcode‘\%=12 \catcode‘*=14

356 \gdef\processLine#1{*

357 \ifx%#1

358 \expandafter\processLineX

359 \else

360 \expandafter\normalLine

361 \fi

362 #1}

363 \endgroup

364 ⟨/!stats⟩
365 ⟨∗stats⟩
366 \begingroup

367 \catcode‘\%=12 \catcode‘*=14

368 \gdef\processLine#1{*

369 \advance\processedLines\@ne

370 \ifx%#1

371 \expandafter\processLineX

372 \else

373 \expandafter\normalLine

374 \fi

375 #1}

376 \endgroup

377 ⟨/stats⟩

\processLineX This macro is also defined within a group, because it also has to check if the next
token in the input stream is a ‘%’ character.

If the second token in the current line happens to be a ‘%’, a ⟨MetaComment⟩
has been found. This has to be copied in its entirety to the output. Another pos-
sible second character is ‘<’, which introduces a guard expression. The processing
of such an expression is started by calling \checkOption.

When the token was neither a ‘%’ nor a ‘<’, the line contains a normal comment
that has to be removed.

30

We express conditions in such a way that all actions appear on first nesting
level of \ifs. In such conditions just one expandafter pushes us outside whole con-
struction. A thing to watch here is \relax. It stops search for numeric constant.
If it wasn’t here TEX would expand the first case of \ifcase before knowing the
value.

378 \begingroup

379 \catcode‘\%=12 \catcode‘*=14

380 \gdef\processLineX%#1{*

381 \ifcase\ifx%#10\else

382 \ifx<#11\else 2\fi\fi\relax

383 \expandafter\putMetaComment\or

384 \expandafter\checkOption\or

385 \expandafter\removeComment\fi

386 #1}

387 \endgroup

9.6 The handling of options

\checkOption When the macros that process a line have found that the line starts with ‘%<’, a
guard line has been encountered. The first character of a guard can be an asterisk
(*), a slash (/) a plus (+), a minus (-), a less-than sign (<) starting verbatim
mode, a commercial at (@) or any other character that can be found in an option
name. This means that we have to peek at the next token and decide what kind
of guard we have.

We reinsert #1 as it may be needed by \doOption.

388 \def\checkOption<#1{%

389 \ifcase

390 \ifx*#10\else \ifx/#11\else

391 \ifx+#12\else \ifx-#13\else

392 \ifx<#14\else \ifx @#15\else 6\fi\fi\fi\fi\fi\fi\relax

393 \expandafter\starOption\or

394 \expandafter\slashOption\or

395 \expandafter\plusOption\or

396 \expandafter\minusOption\or

397 \expandafter\verbOption\or

398 \expandafter\moduleOption\or

399 \expandafter\doOption\fi

400 #1}

\doOption When no guard modifier is found by \checkOptions, the macro \doOption is
called. It evaluates a boolean expression. The result of this evaluation is stored
in \Expr. The guard only affects the current line, so \do is defined in such a way
that depending on the result of the test \if1\Expr{⟨options⟩}, the current line is
either copied to the output stream or removed. Then the test is computed for all
active output files.

401 \def\doOption#1>#2\endLine{%

402 \maybeMsg{<#1 . >}%

403 \Evaluate{#1}%

404 \def\do##1##2##3{%

405 \if1\Expr{##2}%

406 \def\inLine{#2}%

407 \replaceModuleInLine

31

408 \StreamPut##1{\inLine}\fi

409 }%

410 \activefiles

411 }

\plusOption When a ‘+’ is found as a guard modifier, \plusOption is called. This macro is
very similar to \doOption, the only difference being that displayed message now
contains ‘+’.

412 \def\plusOption+#1>#2\endLine{%

413 \maybeMsg{<+#1 . >}%

414 \Evaluate{#1}%

415 \def\do##1##2##3{%

416 \if1\Expr{##2}%

417 \def\inLine{#2}\replaceModuleInLine

418 \StreamPut##1{\inLine}\fi

419 }%

420 \activefiles

421 }

\minusOption When a ‘-’ is found as a guard modifier, \minusOption is called. This macro is
very similar to \plusOption, the difference is that condition is negated.

422 \def\minusOption-#1>#2\endLine{%

423 \maybeMsg{<-#1 . >}%

424 \Evaluate{#1}%

425 \def\do##1##2##3{%

426 \if1\Expr{##2}\else

427 \def\inLine{#2}\replaceModuleInLine

428 \StreamPut##1{\inLine}\fi

429 }%

430 \activefiles

431 }

\starOption When a ‘*’ is found as a guard modifier, \starOption is called. In this case
a block of code will be included in the output on the condition that the guard
expression evaluates to ⟨true⟩.

The current line is gobbled as #2, because it only contains the guard and
possibly a comment.

432 \def\starOption*#1>#2\endLine{%

First we optionally write a message to the terminal to indicate that a new option
starts here.

433 \maybeMsg{<*#1}%

Then we push the current contents of \blockHead on the stack of blocks,
\guardStack and increment the counter \blockLevel to indicate that we are
now one level of nesting deeper.

434 \expandafter\push\expandafter\guardStack\expandafter{\blockHead}%

435 \advance\blockLevel\@ne

The guard for this block of code is now stored in \blockHead.

436 \def\blockHead{#1}%

32

Now we evaluate guard expression for all output files updating off-counters. Then
we create new list of active output files. Only files that were active in the outer
block can remain active now.

437 \Evaluate{#1}%

438 \let\do\checkguard@do

439 \outputfiles

440 \let\do\findactive@do

441 \edef\activefiles{\activefiles}

442 }

\checkguard@do This form of \do updates off-counts according to the value of guard expression.

443 \def\checkguard@do#1#2#3{%

If this block of code occurs inside another block of code that is not included in
the output, we increment the off counter. In that case the guard expression will
not be evaluated, because a block inside another block that is excluded from the
output will also be excluded, regardless of the evaluation of its guard.

444 \ifnum#3>0

445 \advance#3\@ne

When the off count has value 0, we have to evaluate the guard expression. If the
result is ⟨false⟩ we increase the off-counter.

446 \else

447 \if1\Expr{#2}\else

448 \advance#3\@ne\fi

449 \fi}

\findactive@do This form of \do picks elements of output files list which have off-counters equal
to zero.

450 \def\findactive@do#1#2#3{%

451 \ifnum#3=0

452 \noexpand\do#1{#2}#3\fi}

\slashOption The macro \slashOption is the counterpart to \starOption. It indicates the end
of a block of conditionally included code. We store the argument in the temporary
control sequence \tmp.

453 \def\slashOption/#1>#2\endLine{%

454 \def\tmp{#1}%

When the counter \blockLevel has a value less than 1, this ‘end-of-block’ line
has no corresponding ‘start-of-block’. Therefore we signal an error and ignore this
end of block.

455 \ifnum\blockLevel<\@ne

456 \errmessage{Spurious end block </\tmp> ignored}%

Next we compare the contents of \tmp with the contents of \blockHead. The
latter macro contains the last guard for a block of code that was encountered. If
the contents match, we pop the previous guard from the stack.

457 \else

458 \ifx\tmp\blockHead

459 \pop\guardStack\blockHead

When the contents of the two macros don’t match something is amiss. We signal
this to the user, but accept the ‘end-of-block’.Is this the desired be-

haviour??

33

460 \else

461 \errmessage{Found </\tmp> instead of </\blockHead>}%

462 \fi

When the end of a block of optionally included code is encountered we optionally
signal this on the terminal and decrement the counter \blockLevel.

463 \maybeMsg{>}%

464 \advance\blockLevel\m@ne

The last thing that has to be done is to decrement off-counters and make new list
of active files. Now whole list of output files has to be searched since some inactive
files could have been reactivated.

465 \let\do\closeguard@do

466 \outputfiles

467 \let\do\findactive@do

468 \edef\activefiles{\outputfiles}

469 \fi

470 }

\closeguard@do This macro decrements non-zero off-counters.

471 \def\closeguard@do#1#2#3{%

472 \ifnum#3>0

473 \advance#3\m@ne

474 \fi}

\verbOption This macro is called when a line starts with %<<. It reads a bunch of lines in ver-
batim mode: the lines are passed unchanged to the output without even checking
for starting %. This way of processing ends when a line containing only a percent
sign followed by stop mark given on the %<< line is found.

475 \def\verbOption<#1\endLine{{%

476 \edef\verbStop{\perCent#1}\maybeMsg{<<<}%

477 \let\do\putline@do

478 \loop

479 \ifeof\inFile\errmessage{Source file ended while in verbatim

480 mode!}\fi

481 \read\inFile to \inLine

482 \if 1\ifx\inLine\verbStop 0\fi 1% if not inLine==verbStop

483 \activefiles

484 \maybeMsg{.}%

485 \repeat

486 \maybeMsg{>}%

487 }}

\moduleOption In the case where the line starts %<@: the defined syntax requires that this continues
to %<@@=. At the moment, we assume that the syntax is correct and #1 here is the
module name for substitution into any internal functions in the extracted material.

488 \def\moduleOption @@=#1>#2\endLine{%

489 \maybeMsg{<@@=#1>}%

490 \prepareActiveModule{#1}%

491 }

\prepareActiveModule

\replaceModuleInLine

Here, we set up to do the search-and-replace when doing the extraction. The
argument (#1) is the replacement text to use, or if empty an indicator that no
replacement should be done. The search material is one of __@@, _@@ or @@, done

34

in order such that all three end up the same in the output. The string @@@@ is
hidden from these replacements by temporarily turning it into a pair of letters
with different category codes, not produced by DocStrip; this allows to get @@ in
the output. The replacement function is initialised as a do-nothing for the case
where %<@@= is never seen.

492 \begingroup

493 \catcode‘_ = 12 %

494 \long\gdef\prepareActiveModule#1{%

495 \ifx\relax#1\relax

496 \let\replaceModuleInLine\empty

497 \else

498 \edef\replaceModuleInLine{%

499 \noexpand\replaceAllIn\noexpand\inLine{@@@@}{\string aa}%

500 \noexpand\replaceAllIn\noexpand\inLine{__@@}{__#1}%

501 \noexpand\replaceAllIn\noexpand\inLine{_@@}{__#1}%

502 \noexpand\replaceAllIn\noexpand\inLine{@@}{__#1}%

503 \noexpand\replaceAllIn\noexpand\inLine{\string aa}{@@}%

504 }%

505 \fi

506 }

507 \endgroup

508 \let\replaceModuleInLine\empty

\replaceAllIn

\replaceAllInAuxI

\replaceAllInAuxII

\replaceAllInAuxIII

The code here is a simple search-and-replace routine for a macro #1, replacing
#2 by #3. As set up here, there is an assumption that nothing is going to be
expandable, which is reasonable as DocStrip deals with ‘string’ material.

509 \long\def\replaceAllIn#1#2#3{%

510 \long\def\tempa##1##2#2{%

511 ##2\qMark\replaceAllInAuxIII#3##1%

512 }%

513 \edef#1{\expandafter\replaceAllInAuxI#1\qMark#2\qStop}%

514 }

515 \def\replaceAllInAuxI{%

516 \expandafter\replaceAllInAuxII\tempa\replaceAllInAuxI\empty

517 }

518 \long\def\replaceAllInAuxII#1\qMark#2{#1}

519 \long\def\replaceAllInAuxIII#1\qStop{}

9.7 Batchfile commands

DocStrip keeps information needed to control inclusion of sources in several list
structures. Lists are macros expanding to a series of calls to macro \do with two
or three parameters. Subsequently \do is redefined in various ways and list macros
sometimes are executed to perform some action on every element, and sometimes
are used inside an \edef to make new list of elements having some properties. For
every input file ⟨infile⟩ the following lists are kept:

\b@⟨infile⟩ the “open list”—names of all output files such that their generation should
start with reading of ⟨infile⟩,

\o@⟨infile⟩ the “output list”—names of all output files generated from that source to-
gether with suitable sets of options (guards),

35

\e@⟨infile⟩ the “close list”—names of all output files that should be closed when this
source is read.

For every output file name ⟨outfile⟩ DocStrip keeps following information:

\pth@⟨outfile⟩ full pathname (including file name),

\ref@⟨outfile⟩ reference lines for the file,

\in@⟨outfile⟩ names of all source files separated with spaces (needed by \InFileName),

\pre@⟨outfile⟩ preamble template (as defined with \declarepreamble),

\post@⟨outfile⟩ postamble template.

\generate This macro executes its argument in a group. \inputfiles is a list of files to
be read, \filestogenerate list of names of output files (needed for the message
below). \files contained in #1 define \inputfiles in such a way that all that
has to be done when the parameter is executed is to call this macro. \inputfiles
command is called over and over again until no output files had to be postponed.

520 \def\generate#1{\begingroup

521 \let\inputfiles\empty \let\filestogenerate\empty

522 \let\file\@file

523 #1

524 \ifx\filestogenerate\empty\else

525 \Msg{^^JGenerating file(s) \filestogenerate}\fi

526 \def\inFileName{\csname in@\outFileName\endcsname}%

527 \def\ReferenceLines{\csname ref@\outFileName\endcsname}%

528 \processinputfiles

529 \endgroup}

\processinputfiles This is a recurrent function which processes input files until they are all gone.

530 \def\processinputfiles{%

531 \let\newinputfiles\empty

532 \inputfiles

533 \let\inputfiles\newinputfiles

534 \ifx\inputfiles\empty\else

535 \expandafter\processinputfiles

536 \fi

537 }

\file The first argument is the file to produce, the second argument contains the list of
input files. Each entry should have the format \from{⟨filename.ext⟩}{⟨options⟩}.

The switch \ifGenerate is initially set to ⟨true⟩.
538 \def\file#1#2{\errmessage{Command ‘\string\file’ only allowed in

539 argument to ‘\string\generate’}}

540 \def\@file#1{%

541 \Generatetrue

Next we construct full path name for output file and check if we have to be careful
about overwriting existing files. If the user specified \askforoverwritetrue we
will ask him if he wants to overwrite an existing file. Otherwise we simply go
ahead.

542 \makepathname{#1}%

543 \ifaskforoverwrite

36

We try to open a file with the name of the output file for reading. If this succeeds
the file exists and we ask the user if he wants to overwrite the file.

544 \immediate\openin\inFile\@pathname\relax

545 \ifeof\inFile\else

546 \Ask\answer{File \@pathname\space already exists

547 \ifx\empty\destdir somewhere \fi

548 on the system.^^J%

549 Overwrite it%

550 \ifx\empty\destdir\space if necessary\fi

551 ? [y/n]}%

We set the switch \ifGenerate according to his answer. We allow for both “y”
and “yes”.

552 \ifx\y \answer \else

553 \ifx\yes\answer \else

554 \Generatefalse\fi\fi\fi

Don’t forget to close the file just opened as we want to write to it.

555 \closein\inFile

556 \fi

If file is to be generated we save its destination pathname and pass control to
macro \@fileX. Note that file name is turned into control sequence and \else

branch is skipped before calling \@fileX.

557 \ifGenerate

558 \Name\let{pth@#1}\@pathname

559 \@addto\filestogenerate{\@pathname\space}%

560 \Name\@fileX{#1\expandafter}%

561 \else

In case we were not allowed to overwrite an existing file we inform the user that
we are not generating his file and we gobble \from specifications.

562 \Msg{Not generating file \@pathname^^J}%

563 \expandafter\@gobble

564 \fi

565 }

\@fileX We put name of current output file in \curout and initialize \curinfiles (the
list of source files for this output file) to empty—these will be needed by \from.
Then we start defining preamble for the current file.

566 \def\@fileX#1#2{%

If the csname used for the stream has already been defined, e.g., as a preamble or
postamble or for some other purposes, chances are that turning it into a stream
number will break something. We therefore generate an error and show the current
definition.

567 \ifx#1\relax \else

568 \errmessage{Command \string#1 for denoting the output \noexpand

569 \file stream already defined!^^J

570 \space Current meaning is:^^J^^J\meaning#1^^J^^J

571 \space Extraction will probably fail - check result}%

572 \fi

573 \chardef#1=\stream@closed

574 \def\curout{#1}%

37

If it matches the name of the current preamble or postamble then it definitely
can’t work, so we call that out explicitly:

575 \ifx\curout\currentpreamble

576 \errmessage{Declared preamble name \string#1 not allowed if

577 \string\file{\@stripstring#1} is used}%

578 \fi

579 \ifx\curout\currentpostamble

580 \errmessage{Declared postamble name \string#1 not allowed if

581 \string\file{\@stripstring#1} is used}%

582 \fi

583 \let\curinfiles\empty

584 \let\curinnames\empty

585 \def\curref{\MetaPrefix ^^J%

586 \MetaPrefix\space The original source files were:^^J%

587 \MetaPrefix ^^J}%

Next we execute second parameter. \froms will add reference lines to the pream-
ble.

588 \let\from\@from \let\needed\@needed

589 #2%

590 \let\from\err@from \let\needed\err@needed

We check order of input files.

591 \checkorder

Each \from clause defines \curin to be its first parameter. So now \curin holds
name of last input file for current output file. This means that current output file
should be closed after processing \curin. We add #1 to proper ‘close list’.

592 \Name\@addto{e@\curin}{\noexpand\closeoutput{#1}}%

Last we save all the interesting information about current file.

593 \Name\let{pre@\@stripstring#1\expandafter}\currentpreamble

594 \Name\let{post@\@stripstring#1\expandafter}\currentpostamble

595 \Name\edef{in@\@stripstring#1}{\expandafter\iden\curinnames}

596 \Name\edef{ref@\@stripstring#1}{\curref}

597 }

\checkorder This macro checks if the order of files in \curinfiles agrees with that of
\inputfiles. The coding is somewhat clumsy.

598 \def\checkorder{%

599 \expandafter\expandafter\expandafter

600 \checkorderX\expandafter\curinfiles

601 \expandafter\qStop\inputfiles\qStop

602 }

603 \def\checkorderX(#1)#2\qStop#3\qStop{%

604 \def\tmp##1\readsource(#1)##2\qStop{%

605 \ifx!##2! \order@error

606 \else\ifx!#2!\else

607 \checkorderXX##2%

608 \fi\fi}%

609 \def\checkorderXX##1\readsource(#1)\fi\fi{\fi\fi

610 \checkorderX#2\qStop##1\qStop}%

611 \tmp#3\readsource(#1)\qStop

612 }

38

613 \def\order@error#1\fi\fi{\fi

614 \errmessage{DOCSTRIP error: Incompatible order of input

615 files specified for file

616 ‘\iden{\expandafter\uptospace\curin} \qStop’.^^J

617 Read DOCSTRIP documentation for explanation.^^J

618 This is a serious problem, I’m exiting}\end

619 }

\needed

\@needed

This macro uniquizes name of an input file passed as a parameter and marks it
as needed to be input. It is used internally by \from, but can also be issued in
argument to \file to influence the order in which files are read.

620 \def\needed#1{\errmessage{\string\needed\space can only be used in

621 argument to \string\file}}

622 \let\err@needed\needed

623 \def\@needed#1{%

624 \edef\reserved@a{#1}%

625 \expandafter\@need@d\expandafter{\reserved@a}}

626 \def\@need@d#1{%

627 \@ifpresent{(#1)}\curinfiles

If #1 is present on list of input files for current output file we add a space on end
of its name and try again. The idea is to construct a name that will look different
for TEX but will lead to the same file when seen by operating system.

628 {\@need@d{#1 }}%

When it is not we check if #1 is present in the list of files to be processed. If
not we add it and initialize list of output files for that input and list of output
files that should be closed when this file closes. We also add constructed name
to \curinfiles and define \curin to be able to access constructed name from
\@from.

629 {\@ifpresent{\readsource(#1)}\inputfiles

630 {}{\@addto\inputfiles{\noexpand\readsource(#1)}%

631 \Name\let{b@#1}\empty

632 \Name\let{o@#1}\empty

633 \Name\let{e@#1}\empty}%

634 \@addto\curinfiles{(#1)}%

635 \def\curin{#1}}%

636 }

\from \from starts by adding a line to preamble for output file.

637 \def\from#1#2{\errmessage{Command ‘\string\from’ only allowed in

638 argument to ‘\string\file’}}

639 \let\err@from\from

640 \def\@from#1#2{%

641 \@addto\curref{\MetaPrefix\space #1 \if>#2>\else

642 \space (with options: ‘#2’)\fi^^J}%

Then we mark the file as needed input file.

643 \needed{#1}%

If this is the first \from in current \file (i.e. if the \curinnames so far is empty)
the file name is added to the “open list” for the current input file. And \do⟨current
output⟩{⟨options⟩} is appended to the list of output files for current input file.

644 \ifx\curinnames\empty

39

645 \Name\@addto{b@\curin}{\noexpand\openoutput\curout}%

646 \fi

647 \@addto\curinnames{ #1}%

648 \Name\@addto{o@\curin}{\noexpand\do\curout{#2}}%

649 }

\readsource This macro is called for each input file that is to be processed.

650 \def\readsource(#1){%

We try to open the input file. If this doesn’t succeed, we tell the user so and
nothing else happens.

651 \immediate\openin\inFile\uptospace#1 \qStop\relax

652 \ifeof\inFile

653 \errmessage{Cannot find file \uptospace#1 \qStop}%

654 \else

If statistics are included we nullify line counters

655 ⟨∗stats⟩
656 \processedLines\z@

657 \commentsRemoved\z@

658 \commentsPassed\z@

659 \codeLinesPassed\z@

660 ⟨/stats⟩
When the input file was successfully opened, we try to open all needed output
files by executing the “open list”. If any of files couldn’t be opened because of
number of streams limits, their names are put into \refusedfiles list. This list
subsequently becomes the open list for the next pass.

661 \let\refusedfiles\empty

662 \csname b@#1\endcsname

663 \Name\let{b@#1}\refusedfiles

Now all output files that could be opened are open. So we go through the “output
list” and for every open file we display a message and zero the off-counter, while
closed files are appended to \refusedfiles.

664 \Msg{} \def\@msg{Processing file \uptospace#1 \qStop}

665 \def\change@msg{%

666 \edef\@msg{\@spaces\@spaces\@spaces\space

667 \expandafter\tospaces\uptospace#1 \qStop\secapsot}

668 \let\change@msg\relax}

669 \let\do\showfiles@do

670 \let\refusedfiles\empty

671 \csname o@#1\endcsname

If \refusedfiles is nonempty current source file needs reread, so we append it
to \newinputfiles.

672 \ifx\refusedfiles\empty\else

673 \@addto\newinputfiles{\noexpand\readsource(#1)}

674 \fi

Finally we define \outputfiles and construct off-counters names. Now \dos will
have 3 parameters! All output files become active.

675 \let\do\makeoutlist@do

676 \edef\outputfiles{\csname o@#1\endcsname}%

677 \let\activefiles\outputfiles

678 \Name\let{o@#1}\refusedfiles

40

Now we change the category code of a lot of characters to ⟨other⟩ and make sure
that no extra spaces appear in the lines read by setting the \endlinechar to −1.

679 \makeOther\ \makeOther\\\makeOther\$%

680 \makeOther\#\makeOther\^\makeOther\^^K%

681 \makeOther_\makeOther\^^A\makeOther\%%

682 \makeOther\~\makeOther\{\makeOther\}\makeOther\&%

683 \endlinechar-1\relax

To avoid any UTF-8 handling of characters we set code points 128–255 to other.

684 \@tempcnta=128\relax

685 \loop

686 \catcode\@tempcnta 12\relax

687 \ifnum\@tempcnta <255\relax

688 \advance\@tempcnta\@ne

689 \repeat

Then we start a loop to process the lines in the file one by one.

690 \loop

691 \read\inFile to\inLine

The first thing we check is whether the current line contains an \endinput. To al-
low also real \endinput commands in the source file, \endinput is only recognized
when it occurs directly at the beginning of a line.

692 \ifx\inLine\Endinput

In this case we output a message to inform the programmer (in case this was a
mistake) and end the loop immediately by setting Continue to ⟨false⟩. Note that
\endinput is not placed into the output file. This is important in cases where the
output file is generated from several doc files.

693 \Msg{File #1 ended by \string\endinput.}%

694 \Continuefalse

695 \else

When the end of the file is found we have to interrupt the loop.

696 \ifeof\inFile

697 \Continuefalse

If the file did not end we check if the input line is empty. If it is, the counter
\emptyLines is incremented.

698 \else

699 \Continuetrue

700 \ifx\inLine\empty

701 \advance\emptyLines\@ne

702 \else

703 \emptyLines\z@

704 \fi

When the number of empty lines seen so far exceeds 1, we skip them. If it doesn’t,
the expansion of \inLine is fed to \processLine with \endLine appended to
indicate the end of the line.

705 \ifnum \emptyLines<2

706 \expandafter\processLine\inLine\endLine

707 \else

708 \maybeMsg{/}%

709 \fi

710 \fi

711 \fi

41

When the processing of the line is finished, we check if there is more to do, in
which case we repeat the loop.

712 \ifContinue

713 \repeat

The input file is closed.

714 \closein\inFile

We close output files for which this was the last input file.

715 \csname e@#1\endcsname

If the user was interested in statistics, we inform him of the number of lines
processed, the number of comments that were either removed or passed and the
number of codelines that were written to the output file. Also the totals are
updated.

716 ⟨∗stats⟩
717 \Msg{Lines \space processed: \the\processedLines^^J%

718 Comments removed: \the\commentsRemoved^^J%

719 Comments \space passed: \the\commentsPassed^^J%

720 Codelines passed: \the\codeLinesPassed^^J}%

721 \global\advance\TotalprocessedLines by \processedLines

722 \global\advance\TotalcommentsRemoved by \commentsRemoved

723 \global\advance\TotalcommentsPassed by \commentsPassed

724 \global\advance\TotalcodeLinesPassed by \codeLinesPassed

725 ⟨/stats⟩
The \NumberOfFiles need to be known even if no statistics are gathered so we
update it always.

726 \global\advance\NumberOfFiles by \@ne

727 \fi}

\showfiles@do A message is displayed on the terminal telling the user what we are about to do.
For each open output file we display one line saying what options it is generated
with and the off-counter associated with the file is zeroed. First line contains
also name of input file. Names of output files that are closed are appended to
\refusedfiles.

728 \def\showfiles@do#1#2{%

729 \ifnum#1=\stream@closed

730 \@addto\refusedfiles{\noexpand\do#1{#2}}%

731 \else

732 \Msg{\@msg

733 \ifx>#2>\else\space(#2)\fi

734 \space -> \@stripstring#1}

735 \change@msg

736 \csname off@\number#1\endcsname=\z@

737 \fi

738 }

\makeoutlist@do This macro selects only open output files and constructs names for off-counters.

739 \def\makeoutlist@do#1#2{%

740 \ifnum#1=\stream@closed\else

741 \noexpand\do#1{#2}\csname off@\number#1\endcsname

742 \fi}

42

\openoutput This macro opens output streams if possible.

743 \def\openoutput#1{%

If both maxfile counters are non-zero. . .

744 \if 1\ifnum\@maxfiles=\z@ 0\fi

745 \ifnum\@maxoutfiles=\z@ 0\fi1%

. . . the stream may be opened and counters decremented. But if that cannot be
done. . .

746 \advance\@maxfiles\m@ne

747 \advance\@maxoutfiles\m@ne

748 \StreamOpen#1%

749 \WritePreamble#1%

750 \else

. . . the file is added to the “refuse list”.

751 \@addto\refusedfiles{\noexpand\openoutput#1}%

752 \fi

753 }

\closeoutput This macro closes open output stream when it is no longer needed and increments
maxfiles counters.

754 \def\closeoutput#1{%

755 \ifnum#1=\stream@closed\else

756 \WritePostamble#1%

757 \StreamClose#1%

758 \advance\@maxfiles\@ne

759 \advance\@maxoutfiles\@ne

760 \fi}

9.7.1 Preamble and postamble

\ds@heading This is a couple of lines, stating what file is being written and how it was created.

761 \def\ds@heading{%

762 \MetaPrefix ^^J%

763 \MetaPrefix\space This is file ‘\outFileName’,^^J%

764 \MetaPrefix\space generated with the docstrip utility.^^J%

765 }

\AddGenerationDate Older versions of DocStrip added the date that any file was generated and the
version number of DocStrip. This confused some people as they mistook this for
the version/date of the file that was being written. So now this information is not
normally written, but a batch file may call this to get an old style header.

766 \def\AddGenerationDate{%

767 \def\ds@heading{%

768 \MetaPrefix ^^J%

769 \MetaPrefix\space This is file ‘\outFileName’, generated %

770 on <\the\year/\the\month/\the\day> ^^J%

771 \MetaPrefix\space with the docstrip utility (\fileversion).^^J%

772 }}

\declarepreamble When a batch file is used the user can specify a preamble of his own that will
be written to each file that is created. This can be useful to include an extra
copyright notice in the stripped version of a file. Also a warning that both versions

43

of a file should always be distributed together could be written to a stripped file
by including it in such a preamble.

Every line that is written to \outFile that belongs to the preamble is preceded
by two percent characters. This will prevent DocStrip from stripping these lines
off the file.

The preamble should be started with the macro \declarepreamble; it is ended
by \endpreamble. All processing is done within a group in order to be able to
locally change some values.

\ReferenceLines is let equal \relax to be unexpandable.

773 \let\inFileName\relax

774 \let\outFileName\relax

775 \let\ReferenceLines\relax

776 \def\declarepreamble{\begingroup

777 \catcode‘\^^M=13 \catcode‘\ =12 %

778 \declarepreambleX}

779 {\catcode‘\^^M=13 %

780 \gdef\declarepreambleX#1#2

781 \endpreamble{\endgroup%

782 \def^^M{^^J\MetaPrefix\space}%

783 \edef#1{\ds@heading%

784 \ReferenceLines%

785 \MetaPrefix\space\checkeoln#2\empty}}%

786 \gdef\checkeoln#1{\ifx^^M#1\else\expandafter#1\fi}%

787 }

\declarepostamble Just as a preamble can be specified in a batch file, the same can be done for a
postamble.

The definition of \declarepostamble is very much like the definition above of
\declarepreamble.

788 \def\declarepostamble{\begingroup

789 \catcode‘\ =12 \catcode‘\^^M=13

790 \declarepostambleX}

791 {\catcode‘\^^M=13 %

792 \gdef\declarepostambleX#1#2

793 \endpostamble{\endgroup%

794 \def^^M{^^J\MetaPrefix\space}%

795 \edef#1{\MetaPrefix\space\checkeoln#2\empty^^J%

796 \MetaPrefix ^^J%

797 \MetaPrefix\space End of file ‘\outFileName’.%

798 }}%

799 }

\usepreamble

\usepostamble

Macros for selecting [pre/post]amble to be used.

800 \def\usepreamble#1{\def\currentpreamble{#1}}

801 \def\usepostamble#1{\def\currentpostamble{#1}}

\nopreamble

\nopostamble

Shortcuts for disabling the writing of [pre/post]ambles. This is not done by dis-
abling \WritePreamble or \WritePostamble since that wouldn’t revertable after-
wards. Instead the empty [pre/post]ambles are handled specially in those macros.

802 \def\nopreamble{\usepreamble\empty}

803 \def\nopostamble{\usepostamble\empty}

44

\preamble

\postamble

For backward compatibility we provide these macros defining default preamble
and postamble.

804 \def\preamble{\usepreamble\defaultpreamble

805 \declarepreamble\defaultpreamble}

806 \def\postamble{\usepostamble\defaultpostamble

807 \declarepostamble\defaultpostamble}

\org@preamble

\org@postamble

Default values to use if nothing different is provided.

808 \declarepreamble\org@preamble

809

810 IMPORTANT NOTICE:

811

812 For the copyright see the source file.

813

814 Any modified versions of this file must be renamed

815 with new filenames distinct from \outFileName.

816

817 For distribution of the original source see the terms

818 for copying and modification in the file \inFileName.

819

820 This generated file may be distributed as long as the

821 original source files, as listed above, are part of the

822 same distribution. (The sources need not necessarily be

823 in the same archive or directory.)

824 \endpreamble

825 \edef\org@postamble{\string\endinput^^J%

826 \MetaPrefix ^^J%

827 \MetaPrefix\space End of file ‘\outFileName’.%

828 }

829 \let\defaultpreamble\org@preamble

830 \let\defaultpostamble\org@postamble

831 \usepreamble\defaultpreamble

832 \usepostamble\defaultpostamble

\originaldefault The default preamble header changed in v2.5 to allow distribution of generated
files as long as source also distributed. If you need the original default, not allowing
distribution of generated files add \usepreamble\originaldefault to your .ins
files. Note then that your file can not be included in most TeX distributions on
CD which are distributed ‘pre-installed’ with all LATEX files extracted form the
documented sources and moved to a suitable directory in TEX’s search path.

833 \declarepreamble\originaldefault

834

835 IMPORTANT NOTICE:

836

837 For the copyright see the source file.

838

839 You are *not* allowed to modify this file.

840

841 You are *not* allowed to distribute this file.

842 For distribution of the original source see the terms

843 for copying and modification in the file \inFileName.

844

845 \endpreamble

45

\WritePreamble

846 \def\WritePreamble#1{%

We write out only non-empty preambles.

847 \expandafter\ifx\csname pre@\@stripstring#1\endcsname\empty

848 \else

849 \edef\outFileName{\@stripstring#1}%

Then the reference lines that tell from what source file(s) the stripped file was
created and user supplied preamble.

850 \StreamPut#1{\csname pre@\@stripstring#1\endcsname}%

851 \fi}

\WritePostamble Postamble attributed to #1 is written out. The last line written identifies the file
again.

852 \def\WritePostamble#1{%

We write out only non-empty postambles.

853 \expandafter\ifx\csname post@\@stripstring#1\endcsname\empty

854 \else

855 \edef\outFileName{\@stripstring#1}%

856 \StreamPut#1{\csname post@\@stripstring#1\endcsname}%

857 \fi}

9.8 Support for writing to specified directories

As we’ve seen before every output file is written to directory specified by the value
of \destdir current at the moment of this file’s \file declaration.

\usedir This macro when called should translate its one argument into a directory name
and define \destdir to that value. The default for \usedir is to ignore its argu-
ment and return name of current directory (if known). This can be changed by
commands from docstrip.cfg file.

\showdirectory is used just to display directory name for user’s information.

858 \def\usedir#1{\edef\destdir{\WriteToDir}}

859 \def\showdirectory#1{\WriteToDir}

\BaseDirectory This is config file command for specifying root directory of the TEX hierarchy. It
enables the whole directory selecting mechanism by redefining \usedir. First
make sure that the directory syntax commands have been set up by calling
\@setwritedir, so that the value of \dirsep used by the \edef is (hopefully)
correct.

860 \def\BaseDirectory#1{%

861 \@setwritetodir

862 \let\usedir\alt@usedir

863 \let\showdirectory\showalt@directory

864 \edef\basedir{#1\dirsep}}

\convsep This macro loops through slashes in its argument replacing them with current
\dirsep. It should be called \convsep some/directory/name/\qStop (with
slash on the end).

865 \def\convsep#1/#2\qStop{%

866 #1\ifx\qStop#2\qStop \pesvnoc\fi\convsep\dirsep#2\qStop}

867 \def\pesvnoc#1\qStop{\fi}

46

\alt@usedir Directory name construction macro enabling writing to various directories.

868 \def\alt@usedir#1{%

869 \Name\ifx{dir@#1}\relax

870 \undefined@directory{#1}%

871 \else

872 \edef\destdir{\csname dir@#1\endcsname}%

873 \fi}

874 \def\showalt@directory#1{%

875 \Name\ifx{dir@#1}\relax

876 \showundef@directory{#1}%

877 \else\csname dir@#1\endcsname\fi}

\undefined@directory This macro comes into action when undefined label is spotted. The action is to
raise an error and define \destdir to point to the current directory.

878 \def\undefined@directory#1{%

879 \errhelp{docstrip.cfg should specify a target directory for^^J%

880 #1 using \DeclareDir or \UseTDS.}%

881 \errmessage{You haven’t defined the output directory for ‘#1’.^^J%

882 Subsequent files will be written to the current directory}%

883 \let\destdir\WriteToDir

884 }

885 \def\showundef@directory#1{UNDEFINED (label is #1)}

\undefined@TDSdirectory This happens when label is undefined while using TDS. The label is converted to
use proper separators and appended to base directory name.

886 \def\undefined@TDSdirectory#1{%

887 \edef\destdir{%

888 \basedir\convsep#1/\qStop

889 }}

890 \def\showundef@TDSdirectory#1{\basedir\convsep#1/\qStop}

\UseTDS Change of behaviour for undefined labels is done simply:

891 \def\UseTDS{%

892 \@setwritetodir

893 \let\undefined@directory\undefined@TDSdirectory

894 \let\showundef@directory\showundef@TDSdirectory

895 }

\DeclareDir This macro remaps some directory name to another.

896 \def\DeclareDir{\@ifnextchar*{\DeclareDirX}{\DeclareDirX\basedir*}}

897 \def\DeclareDirX#1*#2#3{%

898 \@setwritetodir

899 \Name\edef{dir@#2}{#1#3}}

9.8.1 Compatibility with older versions

\generateFile Main macro of previous versions of DocStrip.

900 \def\generateFile#1#2#3{{%

901 \ifx t#2\askforoverwritetrue

902 \else\askforoverwritefalse\fi

903 \generate{\file{#1}{#3}}%

904 }}

47

To support command files that were written for the first version of DocStrip the
commands \include and \processFile are defined here. The use of this interface
is not recommended as it may be removed in a future release of DocStrip.

\include To provide the DocStrip program with a list of options that should be included in
the output the command \include{⟨Options⟩} can be used. This macro is meant
to be used in conjunction with the \processFile command.

905 \def\include#1{\def\Options{#1}}

\processFile The macro \processFile{⟨filename⟩}{⟨inext⟩}{⟨outext⟩}{⟨t|f ⟩} can be used
when a single input file is used to produce a single output file. The macro is
also used in the interactive mode of the DocStrip program.

The arguments ⟨inext⟩ and ⟨outext⟩ denote the extensions of the input and
output files respectively. The fourth argument can be used to specify if an existing
file should be overwritten without asking. If ⟨t⟩ is specified the program will ask
for permission before overwriting an existing file.

This macro is defined using the more generic macro \generateFile.

906 \def\processFile#1#2#3#4{%

907 \generateFile{#1.#3}{#4}{\from{#1.#2}{\Options}}}

\processfile

\generatefile

Early versions of DocStrip defined \processfile and \generatefile instead of
the commands as they are defined in this version. To remain upwards compatible,
we still provide these commands, but issue a warning when they are used.

908 \def\processfile{\Msg{%

909 ^^Jplease use \string\processFile\space instead of

910 \string\processfile!^^J}%

911 \processFile}

912 \def\generatefile{\Msg{%

913 ^^Jplease use \string\generateFile\space instead of

914 \string\generatefile!^^J}%

915 \generateFile}

9.9 Limiting open file streams

(This section was written by Mark Wooding)

\maxfiles Some operating systems with duff libraries or other restrictions can’t cope with
all the files which DocStrip tries to output at once. A configuration file can say
\maxfiles{⟨number⟩} to describe the maximum limit for the environment.

I’ll need a counter for this value, so I’d better allocate one.

916 \newcount\@maxfiles

The configuration command \maxfiles is just slightly prettier than an assign-
ment, for LATEX people. It also gives me an opportunity to check that the limit is
vaguely sensible. I need at least 4 streams:

1. A batch file.

2. A sub batch file, which LATEX’s installation utility uses.

3. An input stream for reading an unstripped file.

4. An output stream for writing a stripped file.

48

917 \def\maxfiles#1{%

918 \@maxfiles#1\relax

919 \ifnum\@maxfiles<4

920 \errhelp{I’m not a magician. I need at least four^^J%

921 streams to be able to work properly, but^^J%

922 you’ve only let me use \the\@maxfiles.}%

923 \errmessage{\noexpand\maxfiles limit is too strict.}%

924 \@maxfiles4

925 \fi

926 }

Since batchfiles are now \inputed there should be no default limit here. I’ll
just use some abstract large number.

927 \maxfiles{1972} % year of my birth (MW)

\maxoutfiles Maybe there’s a restriction on just output streams. (Well, there is: I know, because
TEX only allows 16.) I may as well allow the configuration to set this up.

Again, I need a counter.

928 \newcount\@maxoutfiles

And now the macro. I need at least one output stream which I think is rea-
sonable.

929 \def\maxoutfiles#1{%

930 \@maxoutfiles=#1\relax

931 \ifnum\@maxoutfiles<1

932 \@maxoutfiles1

933 \errhelp{I’m not a magician. I need at least one output^^J%

934 stream to be able to do anything useful at all.^^J%

935 Please be reasonable.}%

936 \errmessage{\noexpand\maxoutfiles limit is insane}%

937 \fi

938 }

The default limit is 16, because that’s what TEX says.

939 \maxoutfiles{16}

\checkfilelimit This checks the file limit when a new batch file is started. If there’s fewer than two
files left here, we’re not going to be able to strip any files. The file limit counter is
local to the group which is set up around \batchinput, so that’s all pretty cool.

940 \def\checkfilelimit{%

941 \advance\@maxfiles\m@ne

942 \ifnum\@maxfiles<2 %

943 \errhelp{There aren’t enough streams left to do any unpacking.^^J%

944 I can’t do anything about this, so complain at the^^J%

945 person who made such a complicated installation.}%

946 \errmessage{Too few streams left.}%

947 \end

948 \fi

949 }

9.10 Interaction with the user

\strip@meaning Throw away the first part of \meaning output.

950 \def\strip@meaning#1>{}

49

\processbatchFile When DocStrip is run it always tries to use a batch file.
For this purpose it calls the macro \processbatchFile.
The first thing is to check if there are any input streams left.

951 \def\processbatchFile{%

952 \checkfilelimit

953 \let\next\relax

Now we try to open the batch file for reading.

954 \openin\inputcheck \batchfile\relax

955 \ifeof\inputcheck

If we didn’t succeed in opening the file, we assume that it does not exist. If we
tried the default filename, we silently continue; the DocStrip program will switch
to interactive mode in this case.

956 \ifDefault

957 \else

If we failed to open the user-supplied file, something is wrong and we warn him
about it. This will also result in a switch to interactive mode.

958 \errhelp

959 {A batchfile specified in \batchinput could not be found.}%

960 \errmessage{^^J%

961 **^^J%

962 * Could not find your \string\batchfile=\batchfile.^^J%

963 **}%

964 \fi

965 \else

When we were successful in opening a file, we again have to check whether it was
the default file. In that case we tell the user we found that file and ask him if he
wants to use it.

966 \ifDefault

967 \Msg{**^^J%

968 * Batchfile \DefaultbatchFile\space found Use it? (y/n)?}%

969 \Ask\answer{%

970 **}%

971 \else

When it was the user-supplied file we can safely assume he wants to use it so we
set \answer to y.

972 \let\answer\y

973 \fi

If the macro \answer contains a y we can read in the batchfile. We do it in an
indirect way—after completing \ifs.

974 \ifx\answer\y

975 \closein\inputcheck

976 \def\next{\@@input\batchfile\relax}%

977 \fi

978 \fi

979 \next}

\ReportTotals The macro \ReportTotals can be used to report total statistics for all files pro-
cessed. This code is only included in the program if the option stats is included.

980 ⟨∗stats⟩

50

981 \def\ReportTotals{%

982 \ifnum\NumberOfFiles>\@ne

983 \Msg{Overall statistics:^^J%

984 Files \space processed: \the\NumberOfFiles^^J%

985 Lines \space processed: \the\TotalprocessedLines^^J%

986 Comments removed: \the\TotalcommentsRemoved^^J%

987 Comments \space passed: \the\TotalcommentsPassed^^J%

988 Codelines passed: \the\TotalcodeLinesPassed}%

989 \fi}

990 ⟨/stats⟩

\SetFileNames The macro \SetFileNames is used when the program runs in interactive mode
and the user was asked to supply extensions and a list of filenames.

991 \def\SetFileNames{%

992 \edef\sourceFileName{\MainFileName.\infileext}%

993 \edef\destFileName{\MainFileName.\outfileext}}

\CheckFileNames In interactive mode, the user gets asked for the extensions for the input and output
files. Also the name or names of the input files (without extension) is asked for.
Then the names of the input and output files are constructed from this information
by \SetFileNames. This assumes that the name of the input file is the same as
the name of the output file. But we should not write to the same file we’re reading
from so the extensions should differ.

The macro \CheckFileNames makes sure that the output goes to a different
file to the one where the input comes from.

994 \def\CheckFileNames{%

995 \ifx\sourceFileName\destFileName

If input and output files are the same we signal an error and stop processing.

996 \Msg{^^J%

997 !!^^J%

998 ! It is not possible to read from and write to the same file !^^J%

999 !!^^J}%

1000 \Continuefalse

1001 \else

If they are not the same we check if the input file exists by trying to open it for
reading.

1002 \Continuetrue

1003 \immediate\openin\inFile \sourceFileName\relax

1004 \ifeof\inFile

If an end of file was found, the file couldn’t be opened, so we signal an error and
stop processing.

1005 \Msg{^^J%

1006 !!!^^J%

1007 ! Your input file ‘\sourceFileName’ was not found !^^J%

1008 !!!^^J}%

1009 \Continuefalse

1010 \else

The last check we have to make is if the output file already exists. Therefore we
try to open it for reading. As a precaution we first close the input stream.

1011 \immediate\closein\inFile

51

1012 \immediate\openin\inFile\destdir \destFileName\relax

1013 \ifeof\inFile

If this fails, it didn’t exist and all is well.

1014 \Continuetrue

1015 \else

If opening of the output file for reading succeeded we have to ask the user if he
wants to overwrite it. We assume he doesn’t want to overwrite it, so the switch
\ifContinue is initially set to ⟨false⟩. Only if he answers the question positively
with ‘y’ or ‘yes’ we set the switch back to ⟨true⟩.
1016 \Continuefalse

1017 \Ask\answer{File \destdir\destFileName\space already

1018 exists

1019 \ifx\empty\destdir somewhere \fi

1020 on the system.^^J%

1021 Overwrite it%

1022 \ifx\empty\destdir\space if necessary\fi

1023 ? [y/n]}%

1024 \ifx\y \answer \Continuetrue \else

1025 \ifx\yes\answer \Continuetrue \else

1026 \fi\fi

1027 \fi

All checks have been performed now, so we can close any file that was opened just
for this purpose.

1028 \fi

1029 \fi

1030 \closein\inFile}

\interactive The macro \interactive implements the interactive mode of the DocStrip pro-
gram. The macro is implemented using the ⟨while⟩ construction. While the switch
\ifMoreFiles remains true, we continue processing.

1031 \def\interactive{%

1032 \whileswitch\ifMoreFiles\fi%

To keep macro redefinitions local we start a group and ask the user some questions
about what he wants us to do.

1033 {\begingroup

1034 \AskQuestions

The names of the files that have to be processed are stored as a comma-separated
list in the macro \filelist by \AskQuestions. We use a ⟨for⟩ loop to process
the files one by one.

1035 \forlist\MainFileName:=\filelist

1036 \do

First the names of the input and output files are constructed and a check is made
if all filename information is correct.

1037 \SetFileNames

1038 \CheckFileNames

1039 \ifContinue

If everything was well, produce output file.

1040 \generateFile{\destFileName}{f}%

1041 {\from{\sourceFileName}{\Options}}

1042 \fi%

52

This process is repeated until \filelist is exhausted.

1043 \od

1044 \endgroup

Maybe the user wants more files to be processed, possibly with another set of
options, so we give him the opportunity.

1045 \Ask\answer{More files to process (y/n)?}%

1046 \ifx\y \answer\MoreFilestrue \else

1047 \ifx\yes\answer\MoreFilestrue \else

If he didn’t want to process any more files, the switch \ifMoreFiles is set to
⟨false⟩ in order to interrupt the ⟨while⟩ loop.
1048 \MoreFilesfalse\fi\fi

1049 }}

\AskQuestions The macro \AskQuestions is called by \interactive to get some information
from the user concerning the files that need to be processed.

1050 \def\AskQuestions{%

1051 \Msg{^^J%

1052 **}%

We want to know the extension of the input files,

1053 \Ask\infileext{%

1054 * First type the extension of your input file(s): \space *}%

1055 \Msg{**^^J^^J%

1056 **}%

the extension of the output files,

1057 \Ask\outfileext{%

1058 * Now type the extension of your output file(s) \space: *}%

1059 \Msg{**^^J^^J%

1060 **}%

if options are to be included and

1061 \Ask\Options{%

1062 * Now type the name(s) of option(s) to include \space\space: *}%

1063 \Msg{**^^J^^J%

1064 **^^J%

1065 * Finally give the list of input file(s) without \space\space*}%

the name of the input file or a list of names, separated by commas.

1066 \Ask\filelist{%

1067 * extension separated by commas if necessary %

1068 \space\space\space\space: *}%

1069 \Msg{**^^J}}%

9.11 The main program

When TEX processes the DocStrip program it displays a message about the version
of the program and its function on the terminal.

1070 \Msg{Utility: ‘docstrip’ \fileversion\space <\filedate>^^J%

1071 English documentation \space\space\space <\docdate>}%

1072 \Msg{^^J%

1073 **^^J%

1074 * This program converts documented macro-files into fast *^^J%

53

1075 * loadable files by stripping off (nearly) all comments! *^^J%

1076 **^^J}%

\WriteToDir Macro \WriteToDir is either empty or holds the prefix necessary to read a file
from the current directory. Under UNIX this is ./ but a lot of other systems
adopted this concept. This macro is a default value for \destdir.

The definition of this macro is now delayed until \@setwritedir is called.

\makepathname This macro should define \@pathname to full path name made by combining cur-
rent value of \destdir with its one argument being a file name. Its default value
defined here is suitable for unix, ms-dos and Macintosh, but for some systems it
may be needed to redefine this in docstrip.cfg file. We provide such redefinition
for VMS here.

Macro \dirsep holds directory separator specific for a system. Default value
suitable for UNIX and DOS is slash. It comes in action when \usedir labels are
used directly.

The definition of this macro is now delayed until \@setwritedir is called.

\@setwritedir The following tests try to automatically set the macros \WriteToDir, \dirname
and \makepathname in Unix, Mac, or VMS style. The tests are not run at the
top level but held in this macro so that a configuration file has a chance to define
\WriteToDir which allows the other two to be set automatically. The tests could
more simply be run after the configuration file is read, but the configuration com-
mands like \BaseDirectory need (at least at present) to have \dirsep correctly
defined. It does not define any command that is already defined, so by defining
these commands a configuration file can produce different effects for special needs.
So this command is called by BaseDirectory, \UseTDS, \DeclareDir and finally
at the top level after the cfg is run. It begins by redefining itself to be a no-op so
it effectively is only called once.

1077 \def\@setwritetodir{%

1078 \let\setwritetodir\relax

1079 \ifx\WriteToDir\@undefined

1080 \ifx\@currdir\@undefined

1081 \def\WriteToDir{}%

1082 \else

1083 \let\WriteToDir\@currdir

1084 \fi

1085 \fi

1086 \let\destdir\WriteToDir

VMS Style.

1087 \def\tmp{[]}%

1088 \ifx\tmp\WriteToDir

1089 \ifx\dirsep\@undefined

1090 \def\dirsep{.}%

1091 \fi

1092 \ifx\makepathname\@undefined

1093 \def\makepathname##1{%

1094 \edef\@pathname{\ifx\WriteToDir\destdir

1095 \WriteToDir\else[\destdir]\fi##1}}%

1096 \fi

1097 \fi

54

Unix and Mac styles.

1098 \ifx\dirsep\@undefined

1099 \def\dirsep{/}%

1100 \def\tmp{:}%

1101 \ifx\tmp\WriteToDir

1102 \def\dirsep{:}%

1103 \fi

1104 \fi

1105 \ifx\makepathname\@undefined

1106 \def\makepathname##1{%

1107 \edef\@pathname{\destdir\ifx\empty\destdir\else

1108 \ifx\WriteToDir\destdir\else\dirsep\fi\fi##1}}%

1109 \fi}

If the user has a docstrip.cfg file, use it now. This macro tries to read
docstrip.cfg file. If this succeeds executes its first argument, otherwise the
second.

1110 \immediate\openin\inputcheck=docstrip.cfg\relax

1111 \ifeof\inputcheck

1112 \Msg{%

1113 **^^J%

1114 * No Configuration file found, using default settings. *^^J%

1115 **^^J}%

1116 \else

1117 \Msg{%

1118 **^^J%

1119 * Using Configuration file docstrip.cfg. *^^J%

1120 **^^J}%

1121 \closein\inputcheck

1122 \afterfi{\@@input docstrip.cfg\relax}

1123 \fi

Now run \@setwritedir in case it has not already been run by a command in
a configuration file.

1124 \@setwritetodir

\process@first@batchfile Process the batch file, and then terminate cleanly. This may be set to \relax for
‘new style’ batch files that do not start with \def\batchfile{. . .

1125 \def\process@first@batchfile{%

1126 \processbatchFile

1127 \ifnum\NumberOfFiles=\z@

1128 \interactive

1129 \fi

1130 \endbatchfile}

\endbatchfile User level command to end batch file processing. At the top level, returns totals
and then stops TEX. At nested levels just does \endinput.

1131 \def\endbatchfile{%

1132 \iftopbatchfile

1133 ⟨∗stats⟩
1134 \ReportTotals

1135 ⟨/stats⟩
1136 \expandafter\end

55

1137 \else

1138 \endinput

1139 \fi}

Now we see whether to process a batch file.

\@jobname Jobname (catcode 12)

1140 \edef\@jobname{\lowercase{\def\noexpand\@jobname{\jobname}}}%

1141 \@jobname

\@docstrip docstrip (catcode 12)

1142 \def\@docstrip{docstrip}%

1143 \edef\@docstrip{\expandafter\strip@meaning\meaning\@docstrip}

First check whether the user has defined the control sequence \batchfile. If
he did, it should contain the name of the file to process. If he didn’t, try the
current file, unless that is docstrip.tex in which case a default name is tried.
Whether or not the default batch file is used is remembered by setting the switch
\ifDefault to ⟨true⟩ or ⟨false⟩.
1144 \Defaultfalse

1145 \ifx\undefined\batchfile

\@jobname is lowercase jobname (catcode 12)
\@docstrip is docstrip (catcode 12)

1146 \ifx\@jobname\@docstrip

Set the batchfile to the default

1147 \let\batchfile\DefaultbatchFile

1148 \Defaulttrue

Else don’t process a new batchfile, just carry on with past the end of this file. In
this case processing will move to the initial batchfile which must then be termi-
nated by \endbatchfile or TEX will fall to the star prompt.

1149 \else

1150 \let\process@first@batchfile\relax

1151 \fi

1152 \fi

1153 \process@first@batchfile

1154 ⟨/program⟩

Change History

2.0a
\@gobble: Macro added. 23

2.0b
General: Added bugfix from Denys . 1

2.0c
General: Allow almost all characters in guard (DD) . 1

2.0d
General: Started merging in some of Franks code . 1

2.0e
General: Added counter allocation for the processing of multiple files 16

56

\AskQuestions: Macro added. 53
\declarepostamble: Macro added. 44
\declarepreamble: Macro added. 43
\WritePostamble: Macro added. 46
\WritePreamble: Macro added. 46

2.0f
\Defaultbatchile: Macro added. 18
\Endinput: Macro added. 23
\ifDefault: Macro added. 15
\include: Macro added . 48
\processbatchFile: Macro added. 50
\processFile: Supply \generateFile with \Options 48
\readsource: Added check for lines with \endinput 40

2.0g
\FirstElt: Macro added. 20
\forlist: Macro added. 20
\ifForlist: Macro added. 15
\OtherElts: Macro added. 21
\ReportTotals: Macro added. 50

2.0h
\end: Macro added. 24
\ifMoreFiles: Macro added. 15
\whileswitch: Macro added. 21

2.0i
\Ask: Added check for just ⟨CR⟩ . 23
\emptyLines: Macro added . 16
\readsource: Added check for consecutive empty lines 41

2.0j
General: Wrote introduction . 1
\readsource: First check for end of file before check for empty lines 41
\skip@input: Added macro . 17

2.0k
\eltEnd: Macro added . 19
\eltStart: Macro added . 19
\guardStack: Renamed from \blockStack . 18
\pop: Macro added . 19
\popX: Macro added . 20
\push: Macro added . 20
\pushX: Macro added . 20
\qStop: Macro added . 19
\slashOption: Use new stack mechanism . 33
\starOption: The macro that holds the guard needs to be expanded 32

Use new stack mechanism . 32
2.0m

General: Added some missing percents; corrected some typos 1
Removed dependency from ltugboat, incorporated driver file into source. . . . 1
Renamed all macros that deal with the parsing of boolean expressions 1

\generatefile: Now issue a warning when \processfile or \generatefile are
used . 48

2.0m-DL
General: Various small corrections to English and typos 1

2.0n
\batchinput: Added macro . 17
\skip@input: Argument delimited by space not \relax 17

57

Macro renamed from \skipinput . 17
2.0p

\CheckFileNames: Added \WriteToDir (FMi). 51
Changed question about overwriting. 52

\file: Added \WriteToDir (FMi). 37
\WriteToDir: Macro added (FMi). 54

2.0q
General: Changed all dates to yy/mm/dd for better sorting 1
\interactive: Preceded filename by \WriteToDir . 52

2.0r
\CheckFileNames: Moved \closein statements . 51

Use \inFile for reading . 51
2.1a

\@@input: Macro added . 17
\batchinput: Completely redefined (so that it works) 17

2.1b
General: Added fontdefinitions for doc to the driver file, in order to get the

layout of the code right; also added the layout definitions that are in effect
in doc.drv . 13

modified mailaddress of Johannes . 1
2.1c

General: Added a setting for StandardModuleDepth . 1
Remove definitions for fonts again . 13

2.1e
\n: Macro added . 18

2.2a
General: Update for LaTeX2e . 1
\WriteToDir: check texsys file . 54

2.2c
General: Renamed texsys.tex to texsys.cfg. 1

2.2d
\WriteToDir: do not read dircheck/texsys file . 54

2.2f
General: Allow direct processing of source . 13

2.2j
\org@postamble: Updated default preamble . 45

2.3a
General: Changed driver . 13

New mechanism: output streams allocation . 21
No allocated streams for console . 16
Swapped Primary with Secondary since expressions are generally described
bottom-up . 1

\checkOption: Adapted to concurrent version . 31
Trying to avoid assignments . 31

\declarepreamble: renamed from \preamble; interface changed 43
\file: Changed \@empty (which was undefined) to \empty 37

Messages changed . 36
\generate: Messages changed . 36
\org@postamble: Macro added . 45
\org@preamble: Macro added . 45
\processLine: Adaptation for concurrent version . 30

Trying to avoid assignments . 30
\processLineX: Trying to avoid assignments . 30
\readsource: Renamed to \readsource; adaptation for concurrent version . . . 40

58

\slashOption: Adapted for concurrent version . 33
\starOption: Adapted to concurrent version . 32

2.3b
General: Completely changed expressions parser . 1

Removed mechanism for checking if previous one-line guard is same as
current (\testOption, \closeOption)—this is not a common case and
testing complicates things unnecessarily . 1

\checkguard@do: Change for pre-constructed off-counters’ names 33
\closeguard@do: Change for pre-constructed off-counters’ names 34
\findactive@do: Change for pre-constructed off-counters’ names 33
\makeoutlist@do: Macro added — pre-constructed off-counters’ names 42
\putline@do: Change for pre-constructed off-counters’ names 29
\readsource: Change for pre-constructed off-counters’ names 40

2.3c
General: Changed some dirty tricks to be less/more dirty—all uses of \afterfi 1

When file is multiply listed in \file clause it is multiply read 1
\afterfi: Macro added . 24
\from: part of code moved to \needed . 39
\needed: Macro added . 39
\org@preamble: With \inFileName again . 45
\postamble: As for \preamble . 45
\preamble: Bug fixed: default preamble is now selected not only defined 45
\uptospace: Macro added . 24
\WritePostamble: Added defs of \inFileName and \outFileName 46
\WritePreamble: Added definitions of \inFileName and \outFileName 46

2.3d
\AddGenerationDate: (DPC) Macro added. 43
\WritePreamble: (DPC) Macro added. 46

2.3e
General: added \makepathname to support systems with bizarre pathnames . . . 1

Added doc . 35
Added documentation . 3
batch files work by \input . 1
Directories support . 1
Introduced “open lists” . 1

\@ifnextchar: Macro added . 24
\alt@usedir: Macro added . 47
\BaseDirectory: Macro added . 46
\checkOption: Verbatim mode . 31
\convsep: Macro added . 46
\DeclareDir: Macro added . 47
\declarepostamble: Change for batchfiles working by \input 44
\declarepreamble: Change for batchfiles working by \input 43

Change to allow customization. 43
\ds@heading: Macro added. 43
\file: Changed \WriteToDir to \destdir . 37

Destination directory handling . 37
\from: Introduced “open list” . 39
\makepathname: Macro added . 54
\needed: Forced expansion of argument to fix a bug with filenames containing

macros . 39
\openoutput: Change for “open lists” – renamed from \ensureopen@do 43
\processbatchFile: Batch file is \inputed not \read 50
\putMetaComment: Introduced \MetaPrefix . 29

59

\readsource: Introduced “open list” . 40
\usedir: Macro added . 46
\verbOption: Macro added . 34

2.4a
General: Add stream limits (MDW) . 1
\closeoutput: Don’t close the file if it’s not open (MDW) 43
\generate: Repeat processing of files until all done (MDW) 36
\maxfiles: Macro added (MDW) . 48

No default limit since batchfiles are now \input (MW) 49
\maxoutfiles: Macro added (MDW) . 49
\openoutput: Check whether there are streams left (MDW) 43
\processbatchFile: Added check for file limits (MDW) 50
\processinputfiles: Macro added (MW) . 36
\readsource: Extensively hacked to honour stream limits (MDW) 40
\showfiles@do: Macro added (MW) . 42
\undefined@directory: Macro added (MW) . 47
\undefined@TDSdirectory: Macro added (MW) . 47
\UseTDS: Macro added (MW) . 47

2.4c
General: Add initex support (DPC) . 1
\processbatchFile: Add \jobname checks (DPC) . 50
\strip@meaning: Macro added (DPC) . 49

2.4d
General: Move config file test to outer level (DPC) . 55

Move default batchfile check to outer level (DPC) 56
\@docstrip: Macro added (DPC) . 56
\@jobname: Macro added (DPC) . 56
\endbatchfile: Macro added (DPC) . 55
\process@first@batchfile: Macro added (DPC) . 55
\processbatchFile: Missing batchfile an error (DPC) 50

Move \jobname checks to top level (DPC) . 50
2.4e

\@setwritedir: macro added (DPC) . 54
\askonceonly: macro added (essentially from unpack.ins) (DPC) 23
\BaseDirectory: \@setwritetodir added (DPC) . 46
\DeclareDir: \@setwritetodir added (DPC) . 47
\makepathname: set in \@setwritedir (DPC) . 54
\OriginalAsk: macro added (was in unpack.ins) (DPC) 23
\undefined@directory: Help text added (DPC) . 47
\UseTDS: \@setwritetodir added (DPC) . 47
\WriteToDir: set in \@setwritedir (DPC) . 54

2.4g
\verbOption: Reset \putline@do for /2340 . 34

2.4h
\NumberOfFiles: Declare counter always pr/2429 . 16
\readsource: update \NumberOfFiles even if stats are not gathered pr/2429 . 42

2.4i
General: removed mail addresses as it is hopeless to keep them up-to-date 1
\nopostamble: Macro added. pr/2726 . 44
\nopreamble: Macro added. pr/2726 . 44
\WritePostamble: Test for \empty postamble and don’t write it out. pr/2726 . 46
\WritePreamble: Test for \empty postamble and don’t write it out. pr/2726 . . 46

2.58
General: Read 8bit raw to leave high bits in the .ins files unchanged 15

60

2.5a
\org@postamble: Updated default preamble . 45
\originaldefault: Macro added . 45

2.5b
\originaldefault: Macro renamed from \orginaldefault to

\originaldefault . 45
2.5e

\AskQuestions: Typo in \Ask argument fixed . 53
2.5f

\readsource: Read 8bit raw to leave high bits in the code to unchanged
without utf8 handling (issue 34) . 41

v2.5d
\kernel@ifnextchar: Added macro . 25

v2.5h
\quote@name: Macro added (gh/221) . 22
\StreamClose: Added two times two \expandafters to make the case with a

filename in quotes work as well . 22
Allow spaces in filenames by enclosing them in quotes (gh/221) 22

v2.6a
General: Added the handling of @@-modules from l3docstrip.dtx (gh/337) . . 1
\checkOption: Add the @-sign option from l3docstrip.dtx (gh/337) 31
\doOption: Now use \InLine and call \replaceModuleInline (gh/337) 31
\moduleOption: Macro added from l3docstrip.dtx (gh/337) 34
\normalLine: The search-and-replace macro \replaceModuleInLine added from

l3docstrip.dtx (gh/337) . 29
\prepareActiveModule: Macro added from l3docstrip.dtx (gh/337) 34
\replaceAllIn: Macro added from l3docstrip.dtx (gh/337) 35
\replaceAllInAuxI: Macro added from l3docstrip.dtx (gh/337) 35
\replaceAllInAuxII: Macro added from l3docstrip.dtx (gh/337) 35
\replaceAllInAuxIII: Macro added from l3docstrip.dtx (gh/337) 35
\replaceModuleInLine: Macro added from l3docstrip.dtx (gh/337) 34

v2.6b
\minusOption: Complete the handling of @@-modules from l3docstrip.dtx

(gh/337) also for +/- lines (gh/903) . 32
\plusOption: Complete the handling of @@-modules from l3docstrip.dtx

(gh/337) also for +/- lines (gh/903) . 32
v2.6c

\@fileX: Check that stream macro is not already used (gh/1150) 37

61

	1 Introduction
	1.1 Why the DocStrip program?
	1.2 Functions of the DocStrip program

	2 How to use the DocStrip program
	3 Configuring DocStrip
	3.1 Selecting output directories
	3.2 Setting maximum numbers of streams

	4 The user interface
	4.1 The main program
	4.2 Batchfile commands
	4.2.1 Supporting old interface

	5 Conditional inclusion of code
	6 Internal functions and variables
	7 Those other languages
	7.1 Stuff DocStrip puts in every file
	7.2 Meta-comments
	7.3 Verbatim mode

	8 Producing the documentation
	9 The implementation
	9.1 Initex initializations
	9.2 Declarations and initializations
	9.2.1 Switches
	9.2.2 Count registers
	9.2.3 I/O streams
	9.2.4 Empty macros and macros that expand to a string
	9.2.5 Miscellaneous variables

	9.3 Support macros
	9.3.1 The stack mechanism
	9.3.2 Programming structures
	9.3.3 Output streams allocator
	9.3.4 Input and Output
	9.3.5 Miscellaneous

	9.4 The evaluation of boolean expressions
	9.5 Processing the input lines
	9.6 The handling of options
	9.7 Batchfile commands
	9.7.1 Preamble and postamble

	9.8 Support for writing to specified directories
	9.8.1 Compatibility with older versions

	9.9 Limiting open file streams
	9.10 Interaction with the user
	9.11 The main program

