The 1tcmdhooks module*

Frank Mittelbach Phelype Oleinik
October 22, 2025

1 Introduction

This file implements generic hooks for (arbitrary) commands. In theory every command
\(name) offers now two associated hooks to which code can be added using \AddToHook'
\AddToHookNext, \AddToHookWithArguments, and \AddToHookNextWithArguments.?

However, this is only true “in theory”. In practice there are a number of restrictions
that makes it impossible to use such generic command hooks in a number of cases,
so please read all of section 2 to understand what may prevent you from using them
successfully.

The generic command hooks are:

cmd/(name)/before This hook is executed at the very start of the command, right
after its arguments (if any) are parsed. The hook (code) runs in the com-
mand inside a call to \UseHookWithArguments. Any code added to this hook
using \AddToHookWithArguments or \AddToHookNextWithArguments can access
the command’s arguments using #1, #2, etc., up to the number of arguments of the
command. If \AddToHook or \AddToHookNext are used, the arguments cannot be
accessed (see the Ithooks documentation® on hooks with arguments).

cmd/(name)/after This hook is similar to cmd/(name)/before, but it is executed at the
very end of the command body. This hook is implemented as a reversed hook.

The hooks are not physically present before \begin{document}* (i.e., using a com-
mand in the preamble will never execute the hook) and if nobody has declared any code
for them, then they are not added to the command code ever. For example, if we have
the following definition

\newcommand\foo[2]{Code #1 for #2!}

then executing \foo{A}{B} will simply run Code_ A _for B! as it was always the case.
However, if somebody, somewhere (e.g., in a package) adds

*This file has version v1.0l dated 2025/10/12, © IATEX Project.

1In this documentation, when something is being said about \AddToHook, the same will be valid for
\AddToHookWithArguments, unless that particular paragraph is highlighting the differences between both.
The same is true for the other hook-related functions and their ...WithArguments counterparts.

2In practice this is not supported for all types of commands, see section 2.2 for the restrictions that
apply and what happens if one tries to use this with commands for which this is not supported.

3texdoc lthooks-doc

4More specifically, they are inserted in the commands after the begindocument hook, so they are also
not present while IATEX is reading the .aux file.

\AddToHook{cmd/foo/before}{<before code>}
then, after \begin{document} the definition of \foo will be:

\renewcommand\foo [2]{/
\UseHookWithArguments{cmd/foo/beforeH2H{#1{#2}%
Code #1 for #2!}

and similarly \AddToHook{cmd/foo/after}{<after code>} alters the definition to

\renewcommand\foo [2]{%
Code #1 for #2!Y
\UseHookWithArguments{cmd/foo/after}H{2}{#1}{#2}}

In other words, the mechanism is similar to what etoolbox offers with \pretocmd
and \apptocmd with the important differences

o that code can be prepended or appended (i.e., added to the hooks) even if the
command itself is not (yet) defined, because the defining package has not been
loaded at this point;

e and that by using the hook management interface it is now possible to define how
the code chunks added in these places are ordered, if different packages want to
add code at these points.

2 Restrictions and Operational details

Adding arbitrary material to commands is tricky because most of the time we do not
know what the macro expects as arguments when expanding and TEX doesn’t have a
reliable way to see that, so some guesswork has to be employed.

We can do this in most cases when commands are defined using \NewDocumentCommand
or \newcommand (with a few exceptions). For commands defined with \def the situation
is less good. Common cases where the command hooks will not work are:

e Commands that use special catcode settings within their definition. In that case it
is usually not possible to augment the definition (see 2.1).

o Ifacommand is defined while \ExplSyntax0On is in force and the command contains
~ characters to represent spaces, then it can’t be patched to include the command
hooks. In fact in some very special circumstances you might even get a low-level
error rather than the information that the command can’t be patched (see, for
example, https://github.com/latex3/latex2e/issues/1430.

o Commands that have arguments as far as the user is concerned (e.g., \section or
\caption), but are defined in a way that these arguments are not read by the user
level command but only later during the processing. In that case the after hook
doesn’t work at all. The before hook only works with \AddToHook but not with
\AddToHookWithArguments because the arguments haven’t been read at that point
where the hook is patched in. See section 2.2.

o Adding a specific generic command hook is only attempted once per command,
thus after redefining a command such hooks will no longer be there and will also
not being re-added, see section 2.1.1.

https://github.com/latex3/latex2e/issues/1430

All this means that you have to have a good understanding of how commands are defined
when you attempt to make use of such hooks and something goes wrong. What can help
in that case is to turn on \DebugHooks0On in which case you get much more (low-level)
details on why something fails and what was tried to enable the hooks.

2.1 Patching

The code here tries to find out if a command was defined with \newcommand or
\DeclareRobustCommand or \NewDocumentCommand, and if so it assumes that the ar-
gument specification of the command is as expected (which is not fail-proof, if someone
redefines the internals of these commands in devious ways, but is a reasonable assump-
tion).

If the command is one of the defined types, the code here does a sandboxed expansion
of the command such that it can be redefined again exactly as before, but with the hook
code added.

If however the command is not a known type (it was defined with \def, for exam-
ple), then the code uses an approach similar to etoolbox’s \patchcmd to retokenize the
command with the hook code in place. This procedure, however, is more likely to fail if
the catcode settings are not the same as the ones at the time of command’s definition,
so not always adding a hook to a command will work.

2.1.1 Timing

When \AddToHook (or its expl3 equivalent) is called with a generic cmd hook, say,
cmd/foo/before, for the first time (that is, no code was added to that same hook be-
fore), in the preamble of a document, it will store a patch instruction for that command
until \begin{document}, and only then all the commands which had hooks added will
be patched in one go. That means that no command in the preamble will have hooks
patched into them.

At \begin{document} all the delayed patches will be executed, and if the command
doesn’t exist the code is still added to the hook, but it will not be executed. After
\begin{document}, when \AddToHook is called with a generic cmd hook the first time,
the command will be immediately patched to include the hook, and if it doesn’t exist or
if it can’t be patched for any reason, an error is thrown; if \AddToHook was already used
in the preamble no new patching is attempted.

This has the consequence that a command defined or redefined after \begin{document}
only uses generic cmd hook code if \AddToHook is called for the first time after the def-
inition is made, or if the command explicitly uses the generic hook in its definition by
declaring it with \NewHookPair adding \UseHook as part of the code.’

2.2 Commands that look ahead

Some commands are defined in different “steps” and they look ahead in the input stream
to find more arguments. If you try to add some code to the cmd/(name)/after hook of
such command, it will not work, and it is not possible to detect that programmatically,
so the user has to know (or find out) which commands can or cannot have hooks attached
to them.

One good example is the \section command. You can add something to the
cmd/section/before hook (but only with \AddToHook not \AddToHookWithArguments),

5We might change this behavior in the main document slightly after gaining some usage experience.

but if you try to add anything to the cmd/section/after hook, \section will no longer
work at all. That happens because the \section macro takes no argument, but instead
calls a few internal I TEX macros to look for the optional and mandatory arguments. By
adding code to the cmd/section/after hook, you get in the way of that scanning.

In such a case, where it is known that a specific generic command hook does not work
if code is added to it, the package author can add a \DisableGenericHook® declaration
to prevent this from happening in user documents and thereby avoiding obscure errors.

3 Package Author Interface

The cmd hooks are, by default, available for all commands that can be patched to add
the hooks. For some commands, however, the very beginning or the very end of the
code is not the best place to put the hooks, for example, if the command looks ahead for
arguments (see section 2.2).

If you are a package author and you want to add the hooks to your own com-
mands in the proper position you can define the command and manually add the
\UseHookWithArguments calls inside the command in the proper positions, and manually
define the hooks with \NewHookWithArguments or \NewReversedHookWithArguments.
When the hooks are explicitly defined, patching is not attempted so you can make sure
your command works properly. For example, an (admittedly not really useful) command
that typesets its contents in a framed box with width optionally given in parentheses:

\newcommand\fancybox{\@ifnextchar ({\@fancybox}{\@fancybox(5cm)}}
\def\@fancybox (#1)#2{\fbox{\parbox{#1}{#2}}}

If you try that definition, then add some code after it with
\AddToHook{cmd/fancybox/after}{<code>}

and then use the \fancybox command you will see that it will be completely broken,
because the hook will get executed in the middle of parsing for optional (...) argument.

If, on the other hand, you want to add hooks to your command you can do something
like:

\newcommand\fancybox{\@ifnextchar ({\@fancybox}{\@fancybox(5cm) }}
\def\@fancybox (#1)#2{\fbox{/
\UseHookWithArguments{cmd/fancybox/before}{2}{#1}{#2}%
\parbox{#1}{#2}
\UseHookWithArguments{cmd/fancybox/after {23 {#1}{#2}}}
\NewHookWithArguments{cmd/fancybox/before}{2}
\NewReversedHookWithArguments{cmd/fancybox/after}{2}

then the hooks will be executed where they should and no patching will be at-
tempted. It is important that the hooks are declared with \NewHookWithArguments or
\NewReversedHookWithArguments, otherwise the command hook code will try to patch
the command. Note also that the call to \UseHookWithArguments{cmd/fancybox/before}
does not need to be in the definition of \fancybox, but anywhere it makes sense to insert
it (in this case in the internal \@fancybox).

6Please use \DisableGenericHook if at all, only on hooks that you “own”, i.e., for commands your
package or class defines and not second guess whether or not hooks of other packages should get disabled!

Alternatively, if for whatever reason your command does not support the generic
hooks provided here, you can disable a hook with \DisableGenericHook’, so that when
someone tries to add code to it they will get an error. Or if you don’t want the error,
you can simply declare the hook with \NewHook and never use it.

The above approach is useful for really complex commands where for one or the
other reason the hooks can’t be placed at the very beginning and end of the command
body and some hand-crafting is needed. However, in the example above the real (and
in fact only) issue is the cascading argument parsing in the style developed long ago in
ETEX 2.09. Thus, a much simpler solution for this case is to replace it with the modern
\NewDocumentCommand syntax and define the command as follows:

\DeclareDocumentCommand\fancybox{D () {5cm}m}{\fbox{\parbox{#1}{#2}}}

If you do that then both hooks automatically work and are patched into the right places.

3.1 Arguments and redefining commands

The code in Itcmdhooks does its best to find out how many arguments a given command
has, and to insert the appropriate call to \UseHookWithArguments, so that the arguments
seen by the hook are exactly those grabbed by the command (the hook, after all, is a
macro call, so the arguments have to be placed in the right order, or they won’t match).

When using the package writer interface, as discussed in section 3, to change the
position of the hooks in your commands, you are also free to change how the hook code
in your command sees its arguments. When a cmd hook is declared with \NewHook (or
\NewHookWithArguments or other variations of that), it loses its “generic” nature and
works as a regular hook. This means that you may choose to declare it without arguments
regardless if the command takes arguments or not, or declare it with arguments, even if
the command takes none.

However, this flexibility should not be abused. When using a nonstandard configu-
ration for the hook arguments, think reasonably: a user will expect that the argument
#1 in the hook corresponds to the argument’s first argument, and so on. Any other
configuration is likely to cause confusion and, if used, will have to be well documented.

This flexibility, however, allows you to “correct” the arguments for the hooks. For
example, INTEX’s \refstepcounter has a single argument, the name of the counter. The
cleveref package adds an optional argument to \refstepcounter, making the name of
the counter argument #2. If the author of cleveref wanted, for whatever reason, to add
hooks to \refstepcounter, to preserve compatibility he could write something along the
lines of:

\NewHookWithArguments{cmd/refstepcounter/before}{1}

\renewcommand\refstepcounter[2] [<default>]{%
\UseHookWithArguments{cmd/refstepcounter/before}{1}{#2}J
<code for \refstepcounter>}

so that the mandatory argument, which is arg #2 in the definition, would still be seen as
#1 in the hook code.

Another possibility would be to place the optional argument as the second argument
for the hook, so that people looking for it would be able to use it. In either case, it would
have to be well documented to cause as little confusion as possible.

"Please use \DisableGenericHook if at all, only on hooks that you “own”, i.e., for commands your
package or class defines and not second guess whether or not hooks of other packages should get disabled!

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

A S
\AddToHook J \section 2
\AddToHookWithArguments 3

C T
\caption 2 TEX and BTEX 2e commands:

\AddToHook 1

D \AddToHookNext 1
\DebugHooksOn 3 \AddToHookNextWithArguments 1
\DisableGenericHook 5 \AddToHookWithArguments 1

E \apptocmd 2
\ExplSyntaxOn 2 \DeclareRobustCommand 3

Ndef 2

N \newcommand 3
\newcommand 2 \NewDocumentCommand g
\NewDocumentCommand 2 \PAtChemd . o o oo 3
\NewHoOKiuiiiuinon.. 5 \PTEtOCHd « « v o ee e 2
\NewHookPa.Lir 3 \SECLiOn . . oo 4
\NewHookWithArguments 4
\NewReversedHookWithArguments 4 U

R \UseHook 3
\refstepcounter 5 \UseHookWithArguments 5

	1 Introduction
	2 Restrictions and Operational details
	2.1 Patching
	2.1.1 Timing

	2.2 Commands that look ahead

	3 Package Author Interface
	3.1 Arguments and redefining commands

	Index
	A
	C
	D
	E
	N
	R
	S
	T
	U

